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ABSTRACT

Large-scale networks ranging from enterprise networks to social
networks have grown rapidly. However, understanding these net-
works has been falling behind due to the high dynamics and com-
plexity of larger networks. We propose a novel method to analyze
and visualize network anomaly using topology preserving com-
pressed graphs, which scale to millions of nodes and effectively
reduce the analytic complexity of big graph visualization.

1 INTRODUCTION

Network technologies have evolved rapidly, e.g., the emergence of
Internet of Things (IoT) means an order of magnitude increase of
interconnected devices such as smart phones, sensors, environmen-
tal meters, wearable devices, appliances and vehicles. one pop-
ular social network approaches one billion users. These large-
scale networks can be naturally represented as graphs, to which
we refer as the “big graphs”. Understanding anomalies in these
big graphs [1, 2] is crucial in many cases. For example, a cloud
system administrator needs to keep track of the traffic distribution
among servers and hosts for a better network/virtual-machine opti-
mization. Network managers also need to monitor the latest traffic
graphs to improve situation awareness, real-time troubleshooting
and security-related investigation.

Anomaly analysis and visualization of large graphs remains
challenging due to the non-linear increase of complexity and highly
dynamic nature of such large networks. For example, mobile nodes
can join and leave a network at any time and the network topologies
are constantly changing. Even from a graph drawing point of view,
visualizing a graph with more than approximately a hundred nodes
faces two fundamental challenges. First, the classical force-directed
methods in most cases fail to calculate an optimally aesthetic graph
layout in real time. Second, even if graph layout can be computed,
the visual clutters (mainly due to the edge crossings) created by
the straight-line node-link representation prohibit the user from un-
derstanding the graph in details, which is important for analytical
tasks.

To that end, we propose a novel graph visualization technique,
i.e., compressed graphs, on which a overview+detail visual analytic
tool was developed for analyzing anomalies in large-scale network
graphs. The compressed graphs group the nodes with the similar
neighbor sets into mega-nodes. Unlike clustering (or community
detection), the proposed compressed graph visualization does not
lose any topology information, has a much lower computational
complexity, and scales to analyze graphs with millions of nodes.

2 COMPRESSED GRAPH VISUALIZATION

We propose the topology-preserving compressed graph, which
groups the graph nodes with similar neighbor sets together as
mega-nodes and regenerates a compressed graph for the subse-
quent visualization and analysis. For example in Figure 1, the host
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(a) Original graph (b) Compressed graph

Figure 1: Concept illustration of topology-preserving compressed
graph.

Figure 2: The user interface for the compressed graph visualization

“192.168.2.23” connects to two hub nodes and is surrounded by
three other hosts with the same connection pattern. As many simi-
lar subgraphs like this are embedded in a larger graph, the resulting
redundancy of nodes and links can distract the user in understand-
ing the graph information.

For formal definition, let G = (V,E) be a directed, weighted and
connected graph where V = {v1, ...,vn} and E = {e1, ...,em} denote
the node and link set. Let W be the graph adjacency matrix where
wi j > 0 indicates a link from vi to v j , with wi j denoting the link
weight. In each row of W , Ri = {wi1, ...,win} denotes the row vector
for node vi, representing its connection pattern. The compressed
graph is denoted as G∗ = (V ∗,E∗).

The basic algorithm takes the graph as a simple, undirected and
unweighted one by setting wii = 0 and wi j = w ji = 1 for any wi j > 0.
On graph G, order its node list by the corresponding row vectors
Ri(i = 1, ...,n). For any collection of nodes with the same row vec-
tor (including the single outstanding node), aggregate them into a
new mega-node Gvi = {vi1 , ...,vik}. All Gvi form the node set V ∗
for the compressed graph G∗. Also let f vi = vi1 denote the first
sub-node in Gvi. The link set E∗ in G∗ are generated by simply
replacing all f vi with Gvi in the original link set, and removing all
the links not incident to any f vi. In addition, we have extended
the basic compression algorithm to support directed, weighted, and
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Figure 3: Overview traffic graphs of AFC corporate network with different settings.

Table 1: Performance evaluation on VAST Challenge dataset.

Data nodes edges nodes edges rate time layout layout
(before) (before) (after) (after) (edges) (compress) (before) (after)

undirected sim=1 409 1613 17 50 96.9% 0.007 0.24 0.084
undirected, sim=0.8 409 1613 16 39 97.6% 0.012 0.242 0.088
undirected, sim=0.5 409 1613 13 23 98.6% 0.006 0.25 0.079

directed sim=1 409 1613 26 82 94.9% 0.005 0.245 0.084

Table 2: Performance evaluation on Honeypot dataset.

Data nodes edges nodes edges rate time layout layout
(before) (before) (after) (after) (edges) (compress) (before) (after)

undirected 15380 16353 2 2 99.9% 0.123 10.179 0.079
undirected weighted #bin=10 15380 16353 5 8 99.9% 0.151 10.179 0.692

undirected 44668 45582 2 2 99.9% 0.401 35.09 0.08
undirected 1051595 1158150 2 2 99.9% 4.56 (500) 36.404 0.026

undirected dynamic #win=1 43602 47752 9 16 99.9% 1.27 33.504 0.1
undirected dynamic weighted

#win=1 #bin=10 43602 47752 105 208 99.6% 1.102 33.504 0.946

dynamic graphs by generalizing the definition of adjacency matrix
and the corresponding row vectors.

Unlike graph clustering, the proposed compressed graph can re-
duce the visual complexity without losing any graph information
while preserving many critical features from the original graph,
making it not only easy and but also accurate for human under-
standing and analysis. The right panel of Figure 2 gives an example
of the compressed graph visualization after the basic compression
algorithm. The mega-nodes are differentiated from the single-nodes
by the node fill color, i.e., a larger group is filled with the more sat-
urated color. Node labels of the mega-nodes are created by aggre-
gating the labels of the sub-nodes in the original graph (+ sign) and
become visible upon a mouse-over or click action. Various anomaly
icons, each of them representing one specific type of anomaly, are
used for easy analysis.

The visualization supports basic graph interactions, such
as geometric zoom&pan, node drag&drop, node/link high-
light&selection, as well as advanced node/link visual mappings.
Beyond that, more controls over the compressed graph setting are
accessible through a control panel as in the left of Figure 2. In this
“Compression Options” control panel, multiple checkboxes allow
user interaction for the basic, directed, weighted and dynamic com-
pressed graphs.

3 PRELIMINARY RESULTS

We evaluate the performance in terms of the visual compression
rate (by the number of edges), the compression time and the layout
time before and after. The compression rate is defined by Γ = 1−
|E∗|
|E| . Notably, for the two data sets (VAST Challenge dataset and a

publicly available Honeypot dataset) we tested, compressed graphs
achieves more than 90% compression rates with the basic or fuzzy

algorithm (Table 1). The deterministic compressed graphs can scale
to a million of nodes and multi-millions of edges with a reasonable
computation time. The fuzzy compressed graph with the optimized
shingle implementation supports up to graphs with 105 nodes and
returns results in just a few seconds (Table 2).

A comparison of topology-preserving compressed graphs with
the original graphs is shown in Figure 3 over VAST 2011 Mini
Challenge-II dataset, which contains traffic log from a multina-
tional corporate network, i.e., a firewall log (similar to NetFlow
data), an intrusion detection system (IDS) log, a system log, and
a Nessus network vulnerability scan report. The graph in Fig-
ure 3a is a network connectivity graph with anomaly icons ren-
dered on nodes. However, the view is cluttered and messy obfus-
cating the analysis due to the large number of nodes and edges.
The graphs in Figure 3b and 3c shows a standard compressed
graph and a fuzzy compressed graph with a similarity score of
0.5 derived from the original graph. With much less nodes and
edges, it is easier for the investigator to analyze the anomalies on
the transformed compressed graph, e.g., compromised machines
192.168.2.174/175 conducting port scan activities, denial of ser-
vice (DoS) attacks on web server 172.20.1.5, etc. More details
on the interactive analysis of the compressed graph visualization
can be found in the video demo (http://cps.cmich.edu/
liao1q/video/LDAVCompressedGraphs.wmv).

4 CONCLUSION

Large-scale graph analysis and visualization is an inherent com-
ponent of big data era. Analyzing anomalies in these large net-
works is important but challenging due to the non-linear dynamics
and complexity as graph size increases. The proposed topology-
preserving compressed graphs show promising results in reducing
visual complexity of large networks, and consequently provide a
time-efficient solution for big graph anomaly analysis. Through
on-site live demonstration and videos, we will show the compressed
graphs have many potential applications (e.g., security and network
management) in different scenarios of diversified networks.
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