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Abstract

We are experiencing the worst years of ransomware attacks with continuing
news reports on high-profile ransomware attacks on organizations such as
hospitals, schools, government agencies and private businesses. Recently a
few ransomware attackers have gone beyond simply encrypting files and
waiting for ransom. They threaten to release the data if the victims refuse
their ransom request. In this paper, we propose a hypothetical new revenue
model for the ransomware, i.e., selling the stolen data rather than publishing
the data for free. Through a game-theoretical analysis between attackers
and victims, we contribute a novel model to understand the critical decision
variables for the proposed data-selling ransomware (which we refer as “ran-
somware 2.0”) that sells data as well as demands ransom. We compare the
role of reputation and the profitability of the data-selling ransomware with
traditional ransomware (“ransomware 1.0”) that demands ransom only and
the data-threat ransomware (“ransomware 1.5”) that demands ransom with
the threat of releasing data for no compliance. Both theoretical modeling
and simulation studies suggest that in general both ransomware 2.0 and 1.5
are more profitable than ransomware 1.0, while ransomware 2.0 is always
more profitable than ransomware 1.5. Notably, common defensive measures
that may work to eliminate the financial incentives of ransomware 1.0 may
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not work on ransomware 2.0, in particular the data backup practice and the
never-pay-ransom strategy. Our findings also suggest that the uncertainties
created by this new revenue model may affect attackers’ reputation and users’
willingness-to-pay, therefore, ransomware 2.0 may not always increase the
profitability of attackers. Another finding of the study suggests that reputation
maximization is critical in ransomware 1.0 and 1.5, but not in ransomware
2.0, where attackers could manipulate reputation for profit maximization.

Keywords: Cybersecurity, ransomware, ransomware 1.0, ransomware 1.5,
ransomware 2.0, game theory, data selling, data threat, reputation, economics,
revenue model, profit optimization.

1 Introduction

Ransomware as a class of malware has lately appeared as a major cyber-
security threat. The malware affects victims’ computers and disables access
to system and data files through encryptions, and demands ransom payment
for the return of computer functionality and data. Ransomware is believed
to be highly lucrative [25]. In 2019, the U.S. was hit by an unprecedented
ransomware attacks that impacted at least 113 state and municipal govern-
ments and agencies, 764 health care providers, and 89 universities, and 1233
schools. The potential cost of these attacks was estimated at $7.5 billion [3].
In CyberSecurity annual reports, ransomware is listed as one of the top three
cyberthreat concerns four years in a row (2017–2020) [12].

There are thousands of different ransomware strains in existence, varying
in design and sophistication [8]. The first ransomware attack dates back to
1989 that spread via floppy disks and involved sending money to a post office
to pay the ransom [6]. The concept of file-encryption ransomware became
known as so called “cryptovirology” in a 1996 IEEE Security & Privacy
paper [26]. However, such practice remains relatively uncommon until the
mid 2000s [16]. Since then, ransomware has been automated and profes-
sionalized. The traditional ransomware relies on encrypting information on
the victims’ computer to demand ransom payment. Recently, a new version
of ransomware was found that is armed with browser and email password-
stealing features. While it does encrypt data, it uses a variety of methods
to steal credentials in each of the targeted applications [1]. Ransomware
attackers have threatened to publicly release stolen data if the victims chose
not to respond to their ransom demands [2, 20].
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In this paper, we propose a new revenue model for ransomware, i.e.,
selling the stolen data in addition to demanding ransom. We refer to it as
ransomware 2.0 for data-selling ransomware as opposed to ransomware 1.0
for traditional ransomware (demanding ransom only) or ransomware 1.5
for data-threat ransomware (threatening to publish data if ransom is not
paid). It is imperative to understand what changes ransomware 2.0 may
bring to the ransomware business model. To that end, we conduct game-
theoretical modeling of ransomware 1.0, 1.5 and 2.0 in order to study the
strategic decision-making by victims/users and the profit-driven ransomware
attackers. The attacker has both the stolen data and locked files in order to
gain profit, either from ransom payments by victims or from selling data to
potential buyers, or both. The best response by the victims is studied with the
assumption that decryption is not guaranteed as there have been reports of
victims paying the ransom but not receiving the decryption key [1]. It is even
more uncertain whether the attacker will keep the stolen data confidential.
We explore the role of reputation for ransomware, in particular, we derive
the profit of ransomware 2.0 in three cases: the attacker has no reputation,
perfect reputation, and imperfect reputation; and compare the profitability of
all variants of ransomwares (1.0, 1.5 and 2.0).

Our model and simulation studies suggest ransomware 2.0 is definitely
more profitable than ransomware 1.5, and ransomware 2.0 in general is more
damaging and can make cybercrimes even more lucrative as selling poten-
tially valuable data generates an additional revenue source to the attackers.
For both ransomware 2.0 and 1.5, the threat of data leakage increases the
victims’ willingness-to-pay and hence generates more ransom revenue than
ransomware 1.0 if the data threat does not negatively affect the value of the
locked files to the victims. However, if the market value of the stolen data
is limited, and/or if the uncertainty of data leakage reduces the value of the
locked files to the victims, then ransomware 2.0 and 1.5 may actually be
worse for the attackers. Reputation maximization leads to profit maximization
in both ransomware 1.0 and 1.5, for instance, to maximize ransom revenue
in ransomware 1.5, the attacker shall always leak the data if ransom is
not paid and not to leak the data if ransom is paid. However, having a
perfect reputation in ransomware 2.0 is not necessarily profit maximizing.
The attacker needs to play strategically.

The contribution of this work lies in the novel game-theoretical ran-
somware 2.0 model with data selling as additional revenue source. Contrary
to common belief, our findings suggest that ransomware 2.0 and 1.5 may



68 Z. Li and Q. Liao

not always be more profitable than ransomware 1.0 due to the rising uncer-
tainties. Not trying to be reputable may actually bring more profit in ransom
business is another counterintuitive finding of our study. This paper is among
the first attempts to explore the effects of numerous important factors on
the profitability of the new data-selling ransomware. The game-theoretical
analysis may provide insights in designing defensive measures against ever
evolving malware and ransomware business.

The rest of the paper is organized as follows. Section 2 reviews related
literature. Section 3 conducts the game-theoretical analysis of ransomware
2.0. It starts from the fundamental assumptions to specify the game scenarios.
It then develops the model in steps to analyze the potential impacts of the
data-selling ransomware in three cases of varying reputation of the attacker.
It also applies the game theoretical framework to study the best strategies of
the data-threat ransomware 1.5. Based on the modeling analysis, Section 4
conducts simulation study that illustrates the profitability of ransomware 2.0
in different cases and relative to ransomware 1.0 and ransomware 1.5. Section
5 concludes our work.

2 Related Works

Ransomware has recently taken center stage as one of the most prevalent
cybercrimes. Various reports demonstrate the enormous burden placed on
individuals and institutions [25]. Recent attacks on famous organizations
were discussed with respect to monetary loss involved in those attacks [5].
As cybercriminals are constantly on the lookout for new attack vectors, the
recent COVID-19 pandemic is no exception. Healthcare systems and finan-
cial systems are being attacked with ransomware through COVID-related
content [13].

Given the significant growth and damaging effects of ransomware
attacks, it is important to develop a prevention and protection mechanism.
Researchers have conducted surveys on ransomware taxonomy and counter-
measures [4] and evolution of ransomware [24], and its life cycle and relation
with the Situational Awareness (SA) concept. It also provides a classifica-
tion of ransomware articles based on detection and prevention approaches.
The evolution, prevention and mitigation of ransomware in the context of
Internet of things (IoT) was also surveyed [15]. Like any malware, technical
mechanisms to defend against ransomware attacks are on the front line. For
example, file system activities may be monitored for I/O requests and Master
File Table may be protected to detect zero-day ransomware attacks [17].
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In addition to technical approaches, there has been recent research that
uses economics and game theory to study ransomware behavior. Economic
analysis of ransomware [14] reveals the relationship between the valuation
distribution among the population and the optimal ransom demand. The study
examines the impact of different price discrimination strategies which can
help in estimating an optimal ransom value. Since ransom payments are often
in the form of Bitcoins, data collected from Bitcoin transactions at public
blockchain estimate the market for ransomware payments has a minimum
worth of USD 12,768,536 (22,967.54 BTC) from 2013 to mid-2017 [22].

Game-theoretical model of the ransomware ecosystem [18] was first
developed with emphasis on the decision of companies to invest in backup
technologies and which degree backup investments can serve as a deter-
rent for ongoing attacks. Using game theory to model the strategic playing
by ransomware criminals and victims, researchers can understand potential
prevention measures and further investigate similar types of cybercrime [9].

Study of role of reputation suggests that it is optimal for the criminal to
build a good reputation and always return the files [10]. How victims form
beliefs influences the victims’ intention to pay the ransom. A trust model
shows that the trust in the attacker and reasonable ransomware demands
positively influences the victims’ intention to pay the ransom [27].

While kidnapping and blackmail is typically in a terrorist context [23],
ransomware may be modeled as kidnapping. The kidnapping aspect of ran-
somware was acknowledged at a practical level and the models of hostage
were extended to study the role of irrational aggression and crime deterrence
[11]. The game theoretic literature on kidnapping and blackmail gives insight
on the optimal ransom that criminals should charge and the role of deterrence
through preventative measures.

In line with the economics and game theoretic research on ransomware,
we extend our earlier work [19] with a new game model for data-threat
ransomware (1.5) and additional simulation study to compare its profitability
with both tractional ransomware (1.0) and data-selling ransomware (2.0). We
build the first game-theoretical ransomware model with data selling as an
additional revenue source, with which we study the potentially new type of
ransomware that utilizes the stolen data as either a threat for victims to pay
ransom or an asset for attackers to manipulate. The findings of this study
may give insights to help the development of defensive measures against the
ransomware of the future. Notably, common advice of nearly all ransomware
literature is a mitigation such as backup technologies [18]. While sufficient
data backup has the potential to deter traditional ransomware, it has little
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effect on the new proposed ransomware models which also release or sell the
stolen data.

3 Game Theoretic Analysis of Data-selling Ransomware

In this section, we first lay out the backgrounds and assumptions to specify
the ransomware attacks that will be analyzed. We then develop the game
theoretic models in three cases of varying reputation of the attacker. We
compare the profit of the data-selling ransomware (2.0) with that of traditional
ransomware (1.0) in each case.

3.1 Background and Assumptions

While ransomware may be classified into Scareware, Lock-Screen, and
Encrypting, the most common form of ransomware is file encryption ran-
somware [6]. We consider an potential add-on to this type of ransomware
that not only files are encrypted but the whole or a subset of data are also
transferred to a cloud storage controlled by the attacker. The victims face
dual threats: the threat of losing access to files and the threat of leaking
data. Hereinafter, we use the phrase “returning files” or “unlocking files”
to refer to the situation where the attacker delivers decryption keys to
remove restrictions to a victim’s computing resources and files. We use
the phrase “selling data” to refer to the situation where the attacker sells
the stolen information to a third party. Figure 1 illustrates this data-selling
ransomware.

The attacker has numerous ways to release the data: to release the data to
public for free, to sell the data for revenue, or to keep the data confidential
(do nothing). We assume the attacker is money driven so that the attacker will
sell the data if doing so is more profitable. As seen from past ransomware
attacks, we assume there is no negotiation or bargaining opportunity. Once
hit, the victims face two options: pay the ransom demand or do not pay. If the
attacker does not return the files, then all encrypted files are going to be lost
for good.

There is a cost of returning files and/or selling them. The cost of returning
files may include the cost of delivering the decryption key to the victims
and the cost of guiding the victims on how to recover files and dealing
with queries about files that fail to recover. The cost of selling data includes
the search for potential buyers, delivering channels, and other costs of
data-related transactions. In addition, the current underground ransomware
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Figure 1 A novel data-selling ransomware (ransomware 2.0) model receives revenue from
both locking the data and selling the stolen data.

practice involving cryptocurrencies via distributed blockchain technologies
suggests that the probability of facing punishment for a ransomware attack is
very low across legal jurisdictions.

3.2 Timeline and Payoff Matrix

The ransomware game is a sequential, multi-stage game involving the
attacker and the victims. The timeline of the game is as follows. Stage 1:
The attacker launches a successful ransomware attack on N victims. This
is the starting point of the game. The infected machines lose access to files
and get confidential data stolen. The attacker demands a ransom payment
R, which the victims take as given. Stage 2: After observing R, the victims
decide whether to pay the ransom or not to pay it. This stage is the victims’
decision-making on the ransom payment. Stage 3: Upon observing the vic-
tims’ decision on ransom payment, the attacker chooses whether to return
files to the victims. Stage 4: The attacker determines what to do with the
stolen data, to sell it or do nothing. Both stages 3 and 4 are the attacker’s
follow-up decision-making.
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Let p be the victim’s choice of paying ransom in Stage 2.

p =

{
0, Not to pay ransom,
1, To pay.

(1)

Let r be the attacker’s choice of returning files in Stage 3.

r =

{
0, Not to return files to the victims,
1, To return.

(2)

Let s be the attacker’s choice of selling data in Stage 4.

s =

{
0, Not to sell data,
1, To sell.

(3)

Consider a representative victim i. The payoff (profit) the attacker expects
to receive from victim i is

π = pR+ sAi − rCr (4)

where Cr > 0 is the cost of returning files to the victims. Cd > 0 is the data
transaction cost. Di ≥ 0 is the market value of the data stolen from victim i.
We define Ai as the data profit of the attacker where

Ai =

{
Di − Cd, if Di ≥ Cd,
0, if Di < Cd.

(5)

The payoff (utility) of victim i is

u = −pR− (1− r)Vr,i − sLd,i (6)

where Vr,i ≥ 0 is the value of the locked files to the victims. Ld,i ≥ 0 is the
loss to the victims if the stolen data is sold.

The key difference between the data-selling ransomware and traditional
ransomware is the existence of the stolen data. Numerous questions arise.
Will ransomware be more profitable with the new feature? Will the victims
change their willingness-to-pay the ransom? Will the attacker keep the stolen
data confidential? If the victims do not expect the attacker to keep the data
safe, why should they pay the ransom? To address these questions, we need
to compare the data-selling ransomware to traditional ransomware and show
the difference between game outcomes and payoffs.

p and r are the decision variables in traditional ransomware game. The
game of traditional ransomware has four possible outcomes. The payoff



Game Theory of Data-selling Ransomware 73

Table 1 The payoffs to different outcomes in the traditional ransomware game

Outcome Attacker (π) Victim (u)

p = 0 r = 0 0 −Vr,i

p = 0 r = 1 −Cr 0

p = 1 r = 0 R −R− Vr,i

p = 1 r = 1 R− Cr −R

Table 2 The payoffs to different outcomes in the data-selling ransomware game

Outcome Attacker (π) Victim (u)

p = 0 r = 0 s = 0 0 −Vr,i

p = 0 r = 0 s = 1 Di − Cd −Vr,i − Ld,i

p = 0 r = 1 s = 0 −Cr 0

p = 0 r = 1 s = 1 Di − Cd − Cr −Ld,i

p = 1 r = 0 s = 0 R −R− Vr,i

p = 1 r = 0 s = 1 R+Di − Cd −R− Vr,i − Ld,i

p = 1 r = 1 s = 0 R− Cr −R
p = 1 r = 1 s = 1 R+Di − Cd − Cr −R− Ld,i

matrix of traditional ransomware is as in Table 1. Since the strategy variables
(p, r and s) are binary, the game of data-selling ransomware has eight possible
outcomes. The attacker’s and victim i’s payoffs to different outcomes are in
Table 2. The goals of both the attacker and the victims are to maximize their
expected payoffs, which depend on the game outcomes.

In the ransomware game, the victims are in a disadvantageous position.
As Tables 1 and 2 show, the best possible outcome for the victims is to receive
a zero payoff. This would be the case if the attacker returned files for free,
and would not sell the stolen data. In all the other cases, the victims suffer a
negative payoff.

3.3 The Baseline Case: Non-repeated Game with No Trust

As a baseline case, we model a one-shot game with no need for the attacker
to build reputation. The attacker’s decision-making in Stages 3 and 4 are
independent. Let’s derive the game outcome using backward deduction from
the last stage of the game, i.e., Stage 4.

Proposition 1: In the baseline model, the attacker sets s = 1 if Di ≥ Cd and
s = 0 if Di < Cd.



74 Z. Li and Q. Liao

The attacker sells the stolen data whenever the market price of the data
exceeds the transaction cost. The attacker receives a net gain ofAi = Di−Cd
from the victims whose data values more than the transaction cost in the
market. The attacker receives a payoff of Ai = 0 from the victims whose
data values less than the transaction cost. Now we examine the subgame that
begins at Stage 3. The reduced payoff is as in Table 1.

Proposition 2: In the baseline model, the attacker sets r = 0.

We can see from Table 1 that not returning files to the victims is always
the dominant strategy for the attacker regardless of ransom payment. When
reputation is irrelevant, the attacker has no incentive to return files.

The victims’ ransom payment decision in Stage 2 critically depends on
the victims’ belief that the attacker will honor the ransom payment. In the
baseline model, taking the money and run is the dominant strategy of the
attacker. Expecting the attacker to default, the victims will choose not to pay
the ransom in Stage 2.

Proposition 3: In the baseline model, the victims set p = 0.

Combining Propositions 1 to 3, the baseline model between the attacker
and one victim has two possible outcomes: {p = 0, r = 0, s = 1} if Di ≥
Cd, and {p = 0, r = 0, s = 0} if Di < Cd.

The total profit of the attacker to receive from all victims in the baseline
model is

Πb =
N∑
i=1

Ai (7)

Victim i’s utility is −Vr,i if Di < Cd and −Vr,i − Ldi if Di ≥ Cd.
For traditional ransomware, the game outcome of a one-shot model is

{p = 0, r = 0}, The attacker’s profit is 0 and victim i’s payoff is −Vr,i.
If the attacker’s reputation is irrelevant, the data-selling ransomware is more
profitable than traditional ransomware. The two strains of ransomware were
only equivalent if none of the stolen data were marketable enough, which is
not likely to occur.

Therefore, even if the ransom payment is zero, the attacker may still
receive financial benefits as long as the market value of the stolen data
exceeds the cost of selling data. This is arguably the biggest advantage of
the data-selling ransomware (2.0) compared to traditional ransomware (1.0).
Thus some defensive measures that may work to eliminate the financial
incentives of ransomware 1.0 may not work on ransomware 2.0, in particular
the data backup practice and the never-pay-ransom strategy.
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Data backup has been widely considered the most effective strategy to
mitigate the loss of ransomware [6, 7]. Having a comprehensive data backup
process may effectively protect the victims from the threat of traditional
ransomware. The victims could simply ignore the ransom note and have a
fresh start with the backed-up files. Data backup, however, will not work as
effectively against the data-selling ransomware. The victims are exposed to
the risk of data leakage. Even if the files are fully backed up, the attacker
may gain from selling the valuable data. Data backup will not eliminate the
financial incentives of the data-selling ransomware.

Similarly, the never-pay-ransom strategy that may work for traditional
ransomware since if no one pays, ransomware will become unprofitable.
Therefore, a practical strategy for the victims of traditional ransomware is
always to say no to the attacker. However, the never-pay-ransom strategy
would not work for the data-selling ransomware because attackers can almost
always gain from selling data. The never-pay-ransom strategy does not
remove financial incentives of the new ransomware.

In both cases of data backup and never-pay-ransom, the profit of tradi-
tional ransomware is zero with no ransom payment, but the profit of the
data-selling ransomware can be positive. Nevertheless, it does not imply
the data-selling ransomware is always more profitable than traditional ran-
somware. The equilibrium outcome of the baseline model is not optimal for
neither the attacker nor the victims. If there were trust, the victims could
benefit from paying the ransom for any R ≤ Vr. The attacker could benefit
from returning files and keeping data confidential for any R ≥ Cr. Since
the value of files to the victims is highly likely to exceed the attacker’s cost
of returning files, there exists a range of ransom R ∈ [Cr, Vr] that can be
mutually beneficial. The attacker would be better off receiving a ransom
higher than the cost of returning files. The victims would be better off to
pay a ransom in exchange for the files that value more than the ransom.
However, this “win-win” (when compared to the baseline equilibrium out-
come) situation requires cooperation of the two parties and the victims to
trust the attacker. The attacker cannot ignore reputation if ransomware is to
be a sustainable business model.

3.4 Role of Reputation: A Cooperative Game with Perfect
Reputation

Reputation matters when the outcome of the game between the attacker and
one victim affects the choice of other or future victims. It can be in the
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attacker’s interest to build up a reputation because any short-term gain from
taking the money and run may be offset by the unwillingness of other victims
to pay any ransom.

Proposition 4: In the perfect reputation model, the attacker sets r = 1 and
s = 0 if ransom is paid; the attacker sets r = 0 and s = 1 if ransom is not
paid and Di ≥ Cd.

To illustrate the role of reputation, suppose the attacker had endowed
reputation who would honor the agreement with the victims with no need
to be self-enforcing. The strategy the attacker shall follow, in response to the
victims’ choice, would be straightforward: to return files and keep the stolen
data confidential if the ransom is paid; or to delete the files and sell the data
if the ransom is not paid.

Proposition 5: In the perfect reputation model, victim i sets p = 0 if R >
Vr,i + Ld,i and p = 1 if R ≤ Vr,i + Ld,i.

When the victims trust the attacker, the victims’ willingness-to-pay the
ransomware is Vr,i + Ld,i. By paying the ransom, the victims avoid the file
loss and the data loss.

Suppose there are n victims who set p = 1. The profit of the attacker is

Πt = n(R− Cr) +
N∑

i=n+1

Ai (8)

For traditional ransomware in the case of perfect reputation, the victims’
willingness-to-pay the ransom is capped by Vr,i and the profit of the attacker
is n(R − Cr). Recall the victims’ willingness-to-pay the ransom is 0 in
the baseline case with no trust. Building reputation can be rewarding to the
attacker by increasing the victims’ willingness-to-pay the ransom.

The attacker of the data-selling ransomware receives the same profit from
the n victims who choose to pay the ransom. For the victims who choose
not to pay the ransom, the attacker’s profit increases for the data-selling
ransomware, compared to 0 profit of traditional ransomware. Compared to
traditional ransomware, the data-selling ransomware is more profitable.

In summary, if the attacker has perfect reputation, the data-selling ran-
somware is more profitable than traditional ransomware. However, it is
difficult for the attacker to build perfect reputation in the underground econ-
omy. In reality, although many victims who do not pay the ransom may end
up losing their files, victims who do pay may not necessarily retrieve their
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files. Recent evidence suggests that in 2019 about 60% victims who pay the
ransom recovered their files [12]. Next we extend the model to a competitive
setting, and examine how the data-selling feature of ransomware may add
extra uncertainty to an already risky environment.

3.5 A General Competitive Ransomware Game with Imperfect
Reputation

The victims’ willingness-to-pay ransom depends on the attacker’s reputation.
The victims estimate the credibility of the attacker based on the past records
of the attacker regarding delivering decryption keys and keeping the stolen
data safe, e.g., crawling personal and social networks, forums, search engines,
media reports, etc. Suppose past records of the attacker indicate that the
attacker has βr ∈ [0, 1] percentage of the chance to return files with ransom
payment and βd ∈ [0, 1] percentage of the chance to keep the stolen data
confidential with ransom payment.

A representative victim’s expected utility in the risky environment is

uu = −pR− (1− pβr)Vr − (1− pβd)Ld (9)

From Equation (9), the victim receives a payoff of−Vr−Ld if not paying
ransom (p = 0, βr = 0, βd = 0). The victim’s expected utility is −R− (1−
βr)Vr− (1−βd)Ld if paying (p = 1). Apparently, the victims will choose to
pay the ransom if doing so generates a higher expected payoff, i.e., p = 1 if
−R− (1− βr)Vr − (1− βd)Ld ≥ −Vr − Ld. That leads to Proposition 6.

Proposition 6. In the competitive game, the victims will choose to pay ransom
if R ≤ βrVr + βdLd.

Proposition 6 specifies the victims’ willingness-to-pay in the imperfect
reputation case. There are two parts of the victims’ willingness-to-pay, the
expected value of the locked files and the expected value of the stolen data.
The no-reputation case and the perfect-reputation case are two special cases
of the general expression: βr = βd = 0 for the former and βr = βd = 1 for
the latter. The reputation of the attacker increases the victims’ willingness-to-
pay.

The attacker’s profit with one victim is

πu = pR− pβrCr + (1− pβd)Ai (10)

From Equation (10), the attacker will receive a profit of Ai from a victim
if ransom not paid, and a profit of R− βrCr + (1− βd)Ai if ransom paid.
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Suppose n victims choose to pay the ransom, the expected profit of the
attacker among all victims is

Πu = n(R− βrCr) +
n∑
i=1

(1− βd)Ai +
N∑

i=n+1

Ai (11)

Proposition 7. In the competitive game, the attacker sets βd = 0 if βdLd ≤ Ai
and βd = 1 otherwise.

βdLd is the upper-bound on the potential increase in ransom demand with
data threat. If the expected ransom gain is no higher than the profit of selling
data, the attacker chooses to sell data. Suppose the condition βdLd ≤ Ai
holds true for m out of N victims, the attacker has the likelihood of βd =
1−m/N to keep the stolen data confidential for a random victim.

In the baseline model, it is optimal for the attacker not to return files. In
the cooperative game, the attacker should always return the files with ransom
payment. When the game is competitive with imperfect reputation, it may not
be optimal to always return files with ransom payment or never to return.

Proposition 8. In the competitive game, the attacker shall return files with
ransom payment if βrVr ≥ Cr.

Comparing the profit of ransomware in the cooperative game and the
competitive game, as in Equations (8) and (11), it is ambiguous which
is more profitable. The attacker faces dual tradeoffs. The first is common
to ransomware: the tradeoff between building reputation and gaining from
default. The second is unique to the data-selling ransomware: the tradeoff
between ransom demand and the revenue from selling data.

For example, suppose the number of victims who are willing to pay the
ransom is the same in the two games, i.e., the two n’s in Equations (8) and
(11) take the same value. The ransom demand is Rt in the perfect reputation
game and Ru in the competitive game. Then

Πu −Πt = n{(1− βr)Cr − (Rt −Ru)}+
n∑
i=1

(1− βd)Ai (12)

In the competitive game with imperfect reputation, the attacker may gain
from the saved cost of returning files ((1 − βr)Cr) and selling the stolen
data ((1− βd)Ai). The sacrifice is a potential loss in ransom (Rt −Ru). The
data-selling component of ransomware adds uncertainty to the competitive
game. It not only strengthens the existing tradeoff, it also adds a new layer of
tradeoff to the game, applicable to both the attacker and the victims.
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3.6 Data-threat Ransomware

In this section, we study the best strategy of the attacker when the sensitive
data is used merely as threats rather than revenue-generating sources (i.e.,
ransomware 1.5) and compare the revenue model with ransomware 1.0 and
2.0. In this context, we redefine the parameter s as the attacker’s choice of
releasing the data rather than selling the data in Stage 4.

s =

{
0, Not to release data,
1, To release.

(13)

Similar to the data-selling ransomware game, the victims have one control
variable regarding ransom payment, i.e., p. From the attacker’s perspective,
the attacker responds to the victims’ ransom payment choice by deciding in
the parameters r and s. The attacker still has two control variables, but rather
than considering whether to sell the data, the attacker decides on whether to
release the data.

We solve the model using backward deduction by studying the best
response of the attacker in Stage 4 regarding releasing data.

The attacker’s profit with a representative victim i in this case (denoted
as πf ) is

πf = pR− pβrCr (14)

Comparing Equation (14) with Equation (10), the attacker’s profit from
the victim depends on the victim’s ransom payment choice and the attacker’s
response of returning files. Since the attacker does not sell the data for money,
there is no additional income from data selling. Given the cost of returning
files and the attacker’s choice of returning files, the attacker’s profit depends
on the victim’s choice of ransom payment.

Apparently the choice of releasing the data for free rather than selling
the data for profit affects the profitability of the ransomware to the attacker.
For the victims though, it makes no difference whether the attacker releases
the data for free or for money. As long as the sensitive data is leaked, the
victims suffer the same loss of data leakage. The victims’ willingness to pay
the ransom stays at βrVr + βdLd where in the context of releasing data for
free, βd represents the percentage of the chance the attacker does not release
the data. The victims’ choice of ransom payment is the same as in the general
competitive ransomware game, as stated in Proposition 6.

The expected data-threat ransomware profit is the added-up net ransom
income from the victims choosing to pay the ransom:

Πf = n(R− βrCr) (15)
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where n is the number of victims for whom R ≤ βrVr + βdLd.
The victims’ willingness to pay is increasing in βd. Without loss of

generality, we assume there is no cost of releasing data for the attacker. In
other words, the attacker does not lose or gain financially from releasing the
data per se. The benefit of the data leakage threat is to increase the victims’
willingness to pay. As the attacker receives revenue only from the ransom
payment, it is optimal for the attacker to maximize the victims’ willingness to
pay by playing truthfully regarding data release, i.e., the attacker sets βd = 1
when the victims choose to pay the ransom and vice versa. This leads to the
following proposition.

Proposition 9. In data-threat ransomware 1.5, the attacker plays truthfully
regarding releasing the data, i.e., the attacker sets s = 0 if the ransom is paid
and s = 1 if the ransom is not paid.

At βd = 1, the maximized profit of the data-threat ransomware is

Π∗
f = n∗(R− βrCr) (16)

where n∗ is the maximum number of victims choosing p = 1, for whom
R ≤ βrVr + Ld.

In summary, ignoring the possibility of monetizing the stolen data
removes one layer of uncertainty of the ransomware game. For the attackers,
data-threat ransomware is always worse than data-selling ransomware. On
the other hand, to make the data leakage threat effective, the attacker must
build reputation about data leakage. This is consistent with the reality with
rising cases that the victims’ data are leaked when they deny the ransom
request [21]. The never-pay-ransom and data backup strategies also may not
work on data-threat ransomware as the victims would suffer an additional
loss of data leakage. Even if the victims have full data backup, they may have
the willingness to pay the ransom, given the ransom request is no higher than
the expected loss of data leakage.

4 Simulation Results

In this section, we compare the profit of the data-selling ransomware to
traditional ransomware and data-threat ransomware with simulation experi-
ments in three cases discussed in Section 3: the baseline game model with no
reputation, the cooperative game model with perfect reputation, and a general
competitive game model with imperfect reputation.
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4.1 Simulation Setup

The profit formulas of traditional ransomware and the data-selling ran-
somware in the three cases are in Table 3 where n is the number of victims
choosing to pay the ransom. It varies from case to case. Note the profit
formula of the data-threat ransomware is the same as traditional ransomware
because the two types of ransomware both gain from only ransom payments.

Suppose there are N = 30 victims, and the ransom demand is R = 50.
The victims’ valuation of the locked files (Vr) and the stolen data (Ld) are
randomly generated in the range from 0 to 100. Without loss of generality, we
set the cost of returning files at Cr = 5, the cost of selling data at Cd = 10,
and Di = Ld,i.

4.2 The Case of Data-threat Ransomware

We first study the data-threat ransomware case where the stolen data is
merely used to force ransom payment instead of selling for money. Figure 2
illustrates how the ransomware profit changes with the attacker’s probability
of leaking data with ransom payment at various probability of returning files.
As can be seen, regardless of the attacker’s decision about returning files, the
ransomware profit is maximized at (1−βd) = 0, i.e., always keeping the data
confidential, and decreases as βd decreases. The result is consistent with the
theoretical prediction in Section 3.6. In addition, always unlocking/returning
the data to the victim once the ransom is paid (βr = 1) performs consistently
better than βr = 0 and βr = 0.5, both of whose profits drop to zero
once the probability of data leakage becomes high. However, profit of the
βr = 1 case flattens but never reaches zero even with very high data leakage
rate.

As the attacker’s revenue comes only from ransom payment, the optimal
strategy of the attacker is to play truthfully with data leakage to maximize the

Table 3 The comparison of profit between the traditional ransomware and the data-selling
ransomware

various cases of reputation traditional ransomware data-selling ransomware

βr = βd = 0 0
∑N

i=1Ai

βr = βd = 1 n(R− Cr) n(R− Cr) +
∑N

i=n+1Ai

0 < βr < 1, 0 < βd < 1 n(R− βrCr) n(R−βrCr)+
∑n

i=1(1−βd)Ai+∑N
i=n+1Ai
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Figure 2 Profitability of the data-threat ransomware changes with the probability of data
leakage after ransom payment. The profit-maximizing strategy of the attacker is to always
keep data confidential when ransom is paid and release data when ransom is not paid.

victims’ willingness to pay with the maximum possible data leakage threat. In
other words, the effective data leakage threat depends on the credibility of the
threat. It is profit maximizing for the attacker to build reputation about data
leakage, not only to increase the willingness to pay of current victims, but
also to form the expectations of future victims. All in all, the attacker of the
data-threat ransomware faces no tradeoff between ransom income and data
selling income when the attacker’s option is between releasing the data for
free or keeping the data confidential. Although the data-threat ransomware
game is less uncertain than the data-selling ransomware game, it is certainly
not as profitable.

Figure 3 compares the profit of the data-threat ransomware with the
data-selling ransomware at various data leakage rates given the probability
of returning files at βr = 1. Whereas the attacker has perfect reputation,
the traditional ransomware profit is 675, as illustrated by the horizontal
line. As the figure shows, while both are more profitable than traditional
ransomware, the data-selling ransomware is always more profitable than the
data-threat ransomware. The results suggest that regardless of the probability
of returning data, the data-selling ransomware is more profitable than the
data-threat ransomware while the latter is more profitable than traditional
ransomware.
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Figure 3 Data-selling ransomware is consistently more profitable than data-threat ran-
somware, which is more profitable than traditional ransomware.

4.3 Profits in the No-reputation and Perfect-reputation Cases

At the specified parameters and randomly generated values of Vr and Ld,
the profit of the data-selling ransomware in the case of no reputation (βr =
βd = 0) is 1, 018 (earned from selling data), compared to 0 for traditional
ransomware. In the case of perfect reputation (βr = βd = 1), a victim
chooses to pay the ransom if R ≤ Vr for traditional ransomware. The
simulation results show that 15 victims choose to pay, generating a profit
of 675 at per-victim profit of 45. For the data-selling ransomware, a victim
chooses to pay the ransom if R ≤ Vr + Ld. The simulation results show that
25 victims choose to pay, generating a ransom profit of 1, 125. Meanwhile,
the attacker receives an additional profit of 30 from selling the data of the
5 victims who do not pay the ransom, bringing the profit of the data-selling
ransomware to a total of 1, 155.

Therefore, the data-selling ransomware is more profitable than traditional
ransomware in both the no-reputation case and the perfect-reputation case.
The increase in profit comes from the increased number of victims paying
the ransom and the additional revenue from selling the stolen data.

4.4 Profits in the Imperfect-reputation Case

In the imperfect-reputation case, the victims’ willingness-to-pay is capped at
βrVr + βdLd. Given the victims’ valuation of the locked files and the stolen
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Figure 4 Profitability of the data-selling ransomware changes with the probability of selling
data at various probability of returning files. A low probability of returning files and a high
probability of selling data decrease the victims’ willingness-to-pay. As the probability of
selling data increases, fewer victims pay the ransom but the data revenue increases. The net
change in ransomware profit depends on the relative changes in ransom profit and data-selling
profit.

data, the attacker’s choices of returning files (βr) and selling data (1 − βd)
determine the number of victims choosing to pay the ransom. The attacker
faces a tradeoff between ransom income and data income when setting βr
and βd. If the attacker sets higher probabilities of returning files and keeping
the data safe, the attacker will gain from increased ransom payments but lose
from forgone data income.

4.4.1 How selling data affects ransomware profit
We first study how the probability of selling data affects the ransomware
profit at various probability of returning files. The simulation results suggest
the tradeoff that the attacker faces when setting βr and βd, as in Figure 4.
There are five data series in the figure. The two flat lines are the data-selling
ransomware profit in the no-reputation and perfect-reputation cases for ref-
erence. The other three curves illustrate how the data-selling ransomware
profit changes when the probability of selling the stolen data changes, given
a certain probability of returning files (βr).

Because of the tradeoff between ransom revenue and data revenue,
none of the three curves is monotonic. Increasing the probability of selling
data is not necessarily profit increasing because it decreases the victims’
willingness-to-pay the ransom. Since a lower βr also decreases the victims’
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Table 4 Profitability of the data-selling ransomware at a probability of returning files
βr = 0.5

Prob. of selling data n Ransom Profit Data Profit Ransomware Profit

0 21 997.5 47 1,044.5

0.1 21 997.5 144.1 1,141.6

0.2 20 950 274 1,224

0.3 20 950 367 1,317

0.4 17 807.5 542.2 1,349.7

0.5 14 665 659 1,324

0.6 11 522.5 802.4 1,324.9

0.7 7 332.5 922.3 1,254.8

0.8 3 142.5 1,000.8 1,143.3

0.9 0 0 1,018 1,018

1 0 0 1,018 1,018

willingness-to-pay, the profit-maximizing probability of selling data appears
to be at a low or moderate level when βr is smaller. When βr is big, a higher
probability of selling data tends to be more profitable because a high βr helps
maintain the victims’ willingness-to-pay the ransom while the attacker gains
additionally from selling data.

Table 4 shows an example of the profitability of data-selling ransomware
at βr = 0.5. The table lists the number of victims choosing to pay the ransom
(n), profit from ransom payment, profit from selling data, and total profit of
the data-selling ransomware when the probability of selling data (1 − βd)
increases from 0 to 1. As the probability of selling data increases, the number
of victims choosing to pay the ransom decreases, thus decreasing the ransom
profit while increasing the data profit of the attacker. The last column is the
total profit ransom and data generate to the attacker, as illustrated in Figure 4.

4.4.2 How returning files affects ransomware profit
Now we study the effects of the file-returning probability on ransomware
profit at various data-selling probabilities, as shown in Figure 5. The two
flat lines are the data-selling ransomware profit in the no-reputation and
perfect-reputation cases for reference. The other three curves illustrate how
the data-selling ransomware profit changes when the probability of returning
files changes, given a certain probability of selling data (1− βd).

The results confirm the tradeoff the attacker faces when setting βr
and βd. Increasing the probability of returning files increases the victims’
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Figure 5 Overall, profitability of the data-selling ransomware increases with higher proba-
bility of returning files resulting in more victims paying the ransom. Selling data at (0.5) rate
performs better than no selling (0) or always selling (1). Attacker’s optimal strategy is a mixed
strategy with a combinations of returning files and selling data.

willingness-to-pay the ransom, generating more ransom income, potentially
causing a loss in data profit. The probability of selling data for the victims
who do not pay the ransom is 1, but the probability of selling data for the
victims who pay the ransom is 1 − βd. As more victims pay the ransom, the
data profit decreases but not by as much. Although there are fluctuations,
overall the data-selling ransomware is more profitable when the attacker
increases the probability of returning files, at a given probability of selling
data.

Based on the above results, we summarize that data-selling ransomware
is always more profitable than traditional ransomware in both no-reputation
and perfect-reputation models. For traditional ransomware, it is profit maxi-
mizing to build perfect reputation by always returning the data files. Building
perfect reputation is not necessarily profit maximizing for the data-selling
ransomware because the attacker faces a tradeoff between gaining from
ransom and gaining from selling data. The relative profit of ransomware in
the imperfect-reputation case is nondeterministic, as shown in Figures 4 and
5. It implies that the optimal strategy of the attacker is a mixed strategy with
certain combinations of βr and βd, in accordance with the victims’ valuation
of locked files and stolen data.
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Figure 6 Ransomware profit maximizes around the mean of estimated ransom distribution
of all victims. Data-selling ransomware performs better than traditional ransomware.

4.5 Profits with Choices of Ransom Demand

From game-theoretical point of view, the ransom demand can also be a
strategic choice by the attacker. This simulation studies how ransom demand
affects the profit of traditional and the data-selling ransomware, at various
levels of data leakage threat.

Figure 6 illustrates that profits of both tractional (bottom curve) and data-
selling ransomware (top three curves) at various data-selling rates change
with various choices of ransom demand. The results suggest the profit-
maximizing ransom demand for both traditional and data-selling ransomware
is around the mean of estimated ransom of all victims. The data-selling
ransomware performs better than traditional ransomware for all ransom
demands.

Since the values of Vr and Ld are randomly generated between 0 and 100,
the profit-maximizing ransom demand of traditional ransomware is R = 50
(the average of all the victims’ willingness-to-pay), generating a profit of 675.
To generalize, if the victims’ willingness-to-pay is evenly distributed between
a0 and aN , then the profit-maximizing ransom request is the simple mean of
the victims’ willingness-to-pay, i.e., a0+aN2 . For the data-selling ransomware,
the range of plausible ransom demand is between 0 and 100 + βd100 at βr =
1, the profit-maximizing ransom demand for the data-selling ransomware is
at 100+βd100

2 .
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In an ideal world with perfect information, where the attacker studies
each victim personally, the attacker would receive the maximum possible
profit by demanding each victim a ransom that is equal to their individual
willingness-to-pay. Nevertheless, price differentiation is often not feasible for
the attackers, especially when the attacker faces a large number of unknown
victims. In such cases, the attacker may have to ask an equal ransom on all
victims. The optimal ransom would be equal to the average willingness-to-
pay of all the victims, or equivalent, the willingness-to-pay of an average
victim.

The attacker uses the best guess to figure out the victims’ average
willingness-to-pay. The attacker may select a representative victim to esti-
mate the victim’s willingness-to-pay, or uses a weighted average. For
instance, if the attacker believes a fraction of α1 victims are willing to pay
R1, a fraction of α2 victims are willingness-to-pay R2, and the remaining
victims are willing to pay R3, then the optimal ransom would be α1R1 +
α2R2 + (1− α1 − α2)R3.

4.6 Effects of the Changing Value of Locked Files on
Ransomware Profit

Under the threat of data leakage as in data-selling and data-threat ran-
somware, victims may or may not value the locked files as much as in
traditional ransomware. This may inversely affect the victims’ willingness-
to-pay. For example, a leaked customer database becomes less valuable to the
victims since that means mandatory resetting passwords for all customers or
closing accounts. The decreasing victims’ willingness-to-pay has a potential
to negatively affect the relative profit of the data-selling and data-threat
ransomware.

When factoring in the plausible negative effect of data threat on the
value of locked files, the leftover value of the files is a fraction of the data-
threat-free value of the files, γVr where γ ∈ [0, 1]. A representative victim’s
expected utility is

uu = −pR− (1− pβr)γVr − (1− pβd)Ld (17)

From Equation (17), the victim receives a payoff of −γVr − Ld if not
paying ransom (p = 0, βr = 0 and βd = 0). The victim’s expected utility is
−R−(1−βr)γVr−(1−βd)Ld if paying (p = 1). The victims will choose to
pay if doing so generates a higher expected payoff, i.e., if βrγVr+βdLd ≥ R.
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4.6.1 Case 1: average market value matches average victims’
expected value

We study how γ affects the profit of the data-selling ransomware with the
same randomly generated values of Vr and Ld as above. During simulation,
Vr and Ld are drawn from the same range between 1 and 100. Let ransom
demand be 50 and βr = 1. The profit of the data-selling ransomware remains
at 1, 018 in the no-reputation case, regardless of γ as the attacker profits
only from selling the stolen data. In the perfect-reputation case, the victims’
willingness-to-pay is γVr + Ld. We let γ to vary from 0 to 1 to calculate the
profit of the data-selling ransomware.

Figure 7 shows the results. The flat line is the profit of traditional ran-
somware in the perfect-reputation case for reference. The other three curves
are the profit of the data-selling ransomware at various probabilities of selling
data. The general trend of profitability of the data-selling ransomware is
decreasing as the victims’ valuation of their data decreases. At any given
1−γ, not selling data is the least profitable because the attacker would not be
able to compensate as much the lost ransom income from selling the stolen
data. While not selling data performs the worst, selling at a higher rate does
not necessarily mean more profits than selling at a lower rate.

Figure 7 Profitability of the data-selling ransomware decreases as victims’ valuation of their
locked files decreases under the data leakage threat at various data-selling probabilities. In the
case when average market value matches average victims’ expected value of their locked data,
the data-selling ransomware is always more profitable than traditional ransomware.
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Also shown in Figure 7, the data-selling ransomware stays more prof-
itable than traditional ransomware since even if selling data completely wipes
off victims’ valuation on the locked files, the attacker can still profit no less
from the stolen data.

4.6.2 Case 2: average market value is less than average victims’
expected value

In this simulation, we keep βr = 1,R = 50, and set the average market value
Ld at 50% of the average victims’ expected value on their locked data. In an
analogy of housing market, a house’s market value may be $200,000 but the
owner’s expected value may be $400,000 due to affection.

Figure 8 shows the data-selling ransomware profit exhibits a similar trend
of decreasing profit as victims’ expected valuation decreases as in Figure 7.
However, not selling data generally performs better than the other two curves.
Another interesting result is that in this case data-selling ransomware is not
always more profitable than traditional ransomware (the middle flat line). The
above result suggests that using the stolen data as additional threat to force
the victims to cooperate may back fire when the potential data-selling profit is
limited. If the data is not valuable enough and the data leakage threat reduces
the victims’ valuation of their locked files, the data-selling ransomware is less
profitable than traditional ransomware.

Figure 8 Profitability of the data-selling ransomware decreases as victims’ valuation of their
locked files decreases under the data leakage threat at various data-selling probabilities. In the
case when average market value is less than average victims’ expected value of their locked
data, the data-selling ransomware may be less profitable than traditional ransomware.
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5 Conclusion

In this paper we studied a new type of ransomware that gains potential profit
by selling stolen data in addition to ransom demand. The game-theoretical
models we built analyze the best strategies of both the attacker and the
victims in various cases, i.e., baseline game with no reputation, cooperative
game with perfect reputation, and the general competitive game with imper-
fect reputation. The reputation-building strategy of the attacker (i.e., always
unlocking the data and keeping it confidential when the ransom is paid)
reduces the uncertainty of the data-threat ransomware, therefore, making the
data-threat ransomware less profitable than the data-selling ransomware. The
modeling analysis and simulation studies suggest that the data-selling ran-
somware is more financially rewarding than traditional ransomware in most
cases. However, the realization of the potential financial gains largely depends
on the marketability of the stolen data and whether and how the threat of
data leakage affects the victims’ willingness-to-pay ransom. In this sense, the
data-selling ransomware is more risky to both the attacker and the victims.
Having established reputation is mutually beneficial to both the attacker and
the victims, but having perfect reputation is not necessarily profit-maximizing
for the attacker of the data-selling ransomware. The finding suggests that the
attacker may play strategically with combinations of unlocking and selling
data, and manipulate the perception of the victims to gain profit.
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