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A B S T R A C T

With recent technology advance in Internet of Things (IoT) that involves human, sensors, and mobile devices,
networks are not only growing much larger but more complex and dynamic in nature. The spatiotemporal
dynamics of networks are represented by both topological changes and temporal shifts of attribute information
associated with network components. Understanding the pattern and trend of dynamic networks is increasingly
important. While data mining approaches are generally useful in analyzing the statistical properties of networks,
there has been recent trend to consider bringing human into the loop, and to examine how feedback from visu-
alizations of large-scale dynamic networks can further improve data mining and machine learning. Traditional
visualization methods based on animation and sequences of snapshot graphs are also limited by human cog-
nitive capability. We present a dynamic network analysis and visualization (DNAV) tool which explores the
spatiotemporal dimensions of graph components. In particular, nodes and edges are augmented with spatiotem-
poral segmentation based on both topological and attribute dynamics (e.g., time and locations of connectivity).
To further facilitate analysis of large dynamic networks, DNAV includes statistical dynamic overviews alongside
graph views, as well as data filtering modules for scalable analysis. Using case studies on public datasets, we
demonstrate the effectiveness of DNAV in understanding and analyzing anomalies in dynamic networks such as
computer communication networks.

1. Introduction

Communication networks formed by recent technological advance
in Internet of Things (IoT) are not only becoming much larger in
size but more complex and dynamic in nature (Atzori et al., 2010).
Consequently, the large amount of network traffic log generated by
the movement of people and mobile devices are difficult to analyze.
Dynamic network analysis (Carley, 2014) is an emergent scientific field
to address the challenges and has profound implications for a num-
ber of important tasks. For example, a network operator may need to
detect anomalies in information technology network for potential faults
and security breaches. A military commander may need to gain situ-
ational awareness, and understand the relationships in terrorists net-
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works. Advertisers may need to target high-impact users based upon
user spatiotemporal actions in social networks. Or, cancer researchers
may need to understand interactions in protein networks and detect
anomalous tumor cells.

Dynamic network analysis is highly challenging due to spatiotem-
poral network dynamics in terms of both topological structure and
attribute evolution. Dynamic networks are known for their temporally
changing topology as a result of on/off patterns of network connec-
tivity. For communication networks, for example, network connections
may be established or removed at any moment, making static analy-
sis of a moving target more difficult. Often, dynamic networks are also
encoded in higher dimensional space. For example, edges may contain
properties such as link quality metrics (e.g., loss rate, latency, or band-
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width) and the locations where the connections are made. Similarly,
nodes may contain attributes such as user profile or computing status
(e.g., CPU, memory, or disk utilizations). Determining the most effec-
tive manner to analyze the many complex relationships between these
attributes, especially in a temporally dynamic context, presents signifi-
cant challenges.

While classic statistics and graph theories are useful in analyzing
static networks, such methodologies may become insufficient with large
dynamic networks. There has been research (Lahiri and Berger-Wolf,
2008) to understand and detect anomalies in dynamic networks using
methods such as clustering (Bilgin and Yener, 2006) and link prediction
(Liben-Nowell and Kleinberg, 2007; Han et al., 2014). However, with
rapid growth of dynamic network size, volume, dimension and com-
plexity, data mining approaches alone become inadequate. This is due to
inherent computational infeasibility when considering all possible pre-
diction outcomes. Alternatively, visualization techniques (Bender-de-
Moll and McFarland, 2006) have been proposed to explore dynamic
networks for patterns and potential abnormal behaviors. Among them,
small multiples and animation (van den Elzen et al., 2014; van den
Elzen et al., 2016) are two typical visualization methods for dynamic
network analysis. However, it is still difficult to track changes over time
due to limitations of human cognitive ability. Other dynamic network
visualizations that explore three-dimensional (3D) space (Itoh et al.,
2010; Oline and Reiners, 2005) or utilize superimposition and layer
juxtaposition (Federico et al., 2011; Beck et al., 2012; Pupyrev and
Tikhonov, 2010) have been put forward, but suffered from problems
of visual clutter, readability and preservation of mental map (Archam-
bault et al., 2011).

To that end, we designed and developed Dynamic Network Analysis
and Visualization (DNAV), which is a relatively lightweight, web-based
tool. One major component of DNAV is the dynamic graph view. We
adopt the node-link diagram to take advantage of users’ familiarity with
concept of classic graphs. However, our dynamic graphs differ from
traditional graphs in that spatiotemporal information is encoded within
the graph components. One of the design principles for DNAV is to
try to visually analyze the network dynamics without going to higher-
dimensional space or using animation approaches. Therefore, the nodes
and edges in our dynamic graphs are divided into segments by their
temporal dimensions based on the user’s selection of node and edge
properties. Each segment can be further divided if there are multiple
status values within one time slot. Different colors are utilized to show
dynamic node and edge property evolution over time. By dividing basic
graph components into segments, we accomplish the goal of showing
a dynamic network in one single static view without requiring users to
remember changes as in animation schemes.

While dynamic graphs are ideal for detailed investigation, another
important component of DNAV are the overviews derived from results
of data mining and statistical analysis. For example, temporal trends
in connection magnitudes, network entropies, and property values pro-
vide a quick overview of networks over the entire time period and can
suggest which time periods look suspicious and need further investi-
gation. By combining detailed graph views and overviews, DNAV pro-
vides a scalable solution to large-scale dynamic graph analysis. We have
implemented multiple interactive functions. First, a time selection bar
allows investigators to analyze dynamic graphs only within certain time
period. Second, the maximum hop setting enables analysts to limit the
number of hops from a selected node. The resulting smaller subgraphs
allow scalable visualization of large networks. Lastly, node and edge
filtering by their weight attributes is included.

We evaluate DNAV over two publicly-available datasets (Whiting et
al., 2015; Grinstein et al., 2009) that contain communication records
involving network traffic data, time, and user proximity location infor-
mation. DNAV is effective in identifying the time and location of
anomalous events in network communication patterns.

The rest of the paper is organized as follows: In Section 2, we
discuss and compare various data mining and visualization meth-

ods in dynamic network analysis. Section 3 describes the key com-
ponents of DNAV, i.e., dynamic graph construction. Section 4 dis-
cusses the dynamic network aggregation overviews. In both sec-
tions, we introduce important metrics used for dynamic network
anomaly detection and the design principles of visualization in DNAV.
Section 5 describes the system architecture and implementations.
Two detailed case studies are conducted in Section 6 to illustrate
the usage applications of DNAV. Finally, we conclude our work in
Section 7.

2. Related work

In general, there have been either data mining or visualization
approaches in order to understand the dynamics of large complex net-
works. Data mining of network graphs (graph mining) is historically
performed on static graphs. In recent years, researchers have focused
on how to understand the evolutionary patterns and structures of net-
works. In a survey article (Aggarwal and Subbian, 2014), an overview
of the main methods used for dynamic network analysis is discussed. In
particular, evolutional analysis of dynamic graphs in terms of both the
snapshots and streaming scenarios is especially challenging.

Analysis of temporal evolution of communities in dynamic networks
is one major area of dynamic network analysis (DNA). Incremental
community mining based on the historic community structures rather
than independent approaches over static snapshots has been proposed.
In particular, the static L-metric method (Takaffoli et al., 2013) was
extended to analyze dynamic social networks. In addition, the FacetNet
framework (Lin et al., 2009) proposed a probabilistic (Bayesian) model
based on the Dirichlet distribution that naturally assigns soft (prob-
abilistic) community memberships to nodes. Since adjacency matrix
representation is useful in finding patterns including communities in
graphs, Colibri methods (Tong et al., 2008) have been proposed to
provide efficient (in terms of computational time and space), low-rank
approximations of the adjacency matrices for both static and dynamic
graphs.

Anomaly detection in time-evolving networks is another important
task in the DNA domain. A recent survey (Ranshous et al., 2015) intro-
duced detailed anomaly types and summarized the main methods used
to analyze dynamic networks, such as community based methods, node
and edge detection, subgraph detection and compression-based meth-
ods. Anomaly detection in time-varying graphs can also be achieved
using a correlation matrix of selected features or attributes of nodes
(degrees, weights, etc.) and comparing matrices’ eigenvectors (Akoglu
and Faloutsos, 2010). Trend motif (Jin et al., 2007) has been put for-
ward to uncover significant events within evolving weighted, com-
plex networks. Periodic subgraph mining method (Lahiri and Berger–
Wolf, 2008) has been utilized to identify periodically recurring patterns
within dynamic social networks. Evolving relational states between
the entities of the dynamic networks were analyzed by using an algo-
rithm to detect all maximal non-redundant evolution paths (Ahmed and
Karypis, 2012).

The first step in anomaly detection and intrusion detection is to
collect data. Various network data collection techniques (Zhou et al.,
2018) based on packet, flow, and log are useful. In particular, security-
related data collection (Lin et al., 2018) is critical for accurate analy-
sis, and therefore, their functional and security objectives need to be
ensured. Security data collection for intrusion detection can be applied
in mobile ad hoc networks (MANET) (Liu et al., 2018) and long-term
evolution (LTE) networks (He et al., 2018), and various attack types
specific to these networks are addressed. Intrusion detection may uti-
lize data fusion technologies (Li et al., 2018) or automata model (Fu
et al., 2017) to detect attacks against Internet of Things (IoT) such as
jamming, false, and replay attacks. Trust management systems (Zhang
et al., 2017) ensure privacy of spam reporting hosts by applying homo-
morphic encryption.
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Visualization techniques have also been proven to be useful for
dynamic network analytic processes. The primary objectives of visual-
ization design for DNA are the ability to comprehensively display spa-
tiotemporal network information, to control visual complexity, and to
improve computational scalability. The evolution of dynamic networks
has been in previous work represented by animation- or movie-like
approaches (Grabowicz et al., 2014; Kang et al., 2007). GraphDiaries
(Bach et al., 2014) and storyboards (Beyer and Hassan, 2006) are other
examples using animated visualization for dynamic network analysis.

Dynamic network visualization can also use small multiples (Burch
and Weiskopf, 2014; Alencar et al., 2012). Small multiples provide an
overview of network evolution by using a series of similar graphs. Other
approaches have used layer superimposition and layer juxtaposition
visualizations (Federico et al., 2011). However, the tradeoff between
screen pixels and data points prevents the above methods from analyz-
ing dynamic networks with a large volume of data. In addition, even
if these approaches decrease complexity by multiplexing the states of a
dynamic network in time, they increase human cognitive load to track
changes over time.

Networks are historically based on node-link diagrams that play an
irreplaceable role in network analysis, thanks to their intuitiveness in
showing relational structures within a network. With the appearance of
time-varying networks, there have been other structures for represent-
ing dynamic networks. For example, MultiPiles (Bach et al., 2015) com-
pares piles of adjacency matrices instead of graphs for visualizing dense
dynamic (brain connectivity) networks. Dynamic graphs can be repre-
sented with a hierarchial radial tree layout with ThumbWheel sectors
(Burch et al., 2011a). Radial tree (Burch and Diehl, 2008), as a new data
structure, shows the temporal evolution of relations in a static view.
The radius of the outer circle serves as temporal dimension. Radial tree
layout has the benefit of reducing visual clutter compared to node-link
diagrams, but visualizations based on it are not as easy to comprehend
as node-link based visualizations, as they do not have intuitive topolog-
ical representation.

Other approaches (Itoh et al., 2010, 2012) explore multiple dimen-
sion visualizations to demonstrate temporal changes of networks by
extending multiple 2D planes into 3D space, or 2.5D representations.
These techniques have their advantages in presenting a complete view
of dynamic networks. However, it is challenging for interactive anal-
ysis as analysts have to constantly zoom or rotate the visualization
to explore the dynamic behaviors of each entity. In a parallel edge
graph layout (Burch et al., 2011b), each vertical dimensional axis rep-
resents a snapshot graph. Parallel edge splatting and rapid serial visual
presentation (RSVP) have been combined (Beck et al., 2012). How-
ever, similar to parallel coordinates, even with edge splatting, the
frequency of edges intersections makes it hard to view the dynam-
ics. Among other approaches in dynamic network visualization, edges
have been divided by their connection dynamics and temporal prop-
erties (Li and Liao, 2016). Nodes and edges that fit a pattern defined
by degree-of-interest (DOI) functions are of primary interest for ana-
lyzing local changes while maintaining an abstract overview of the
global network (Abello et al., 2014). Temporal changes of social net-
works have also been analyzed using NodeXL and TempoVis (Ahn et
al., 2011).

Despite existing work trying to effectively analyze dynamic net-
works, many still fall short when it comes to visualization readabil-
ity, preservation of mental map, scalability and usability (Archam-
bault et al., 2011). Compared with the above visualization methods,
DNAV has notable advantages. For example, DNAV does not require as
much human cognitive capability as for the animation-type approaches
(Archambault et al., 2011; Grabowicz et al., 2014; Kang et al., 2007).
This is due to the fact that DNAV uses one static view for visualizing
the dynamics in network graphs. When compared with small multi-
ples or similar approaches (Burch and Weiskopf, 2014; Alencar et al.,
2012), which are limited to small subgraphs, DNAV supports much
larger graphs as no manual comparison of snapshots of subgraphs is

required. Finally, compared with multi-dimensional approaches (Itoh
et al., 2010, 2012; Oline and Reiners, 2005), DNAV reduces the visual
complexity by staying in the lower dimensions (e.g., 2D vs. 3D) as well
as utilizing well-understood node-link architecture.

3. Dynamic networks - graph view

In this section, we briefly introduce DNAV and its components.
Then, we focus on the most important component, i.e., dynamic net-
work graph design and its underlying algorithms.

3.1. Overview

Fig. 1 illustrates an overview of the Dynamic Network Analysis and
Visualization (DNAV) tool. The tool is designed to help investigators to
understand and identify patterns from general-type dynamic networks
and detect the potential anomalies. The basic layout of DNAV includes
four primary views:

• Dynamic Graph (DG) view (Fig. 1-(2));
• Magnitude of Connectivity (MoC) view (Fig. 1-(5));
• Network Entropy (NE) view (Fig. 1-(6));
• Spatial-temporal Dynamics (STD) view (Fig. 1-(7)).

There are four additional components in DNAV:

• Node query panel (Fig. 1-(1));
• Time slider bar (Fig. 1-(3));
• Selection pool (Fig. 1-(4));
• Graph summary statistics (Fig. 1-(8)).

Lastly, there are several filtering options (by weight, hops, proper-
ties, etc) above the Dynamic Graph (DG) view (Fig. 1-(2)).

The main view is the dynamic graph that intuitively shows the rela-
tionships among entities for communication networks. The dynamic
graph view presents communication networks’ dynamic topologies and
properties over time in a static view. This is achieved through node
and link segmentation with spatiotemporal property information (to be
discussed in detail in following sections).

3.2. Dynamic graph

A dynamic network can be represented by a time-varying graph
GT = ⟨VT,ET⟩, where T represents the whole analysis time period, VT
and ET signify the network entity set and related connectivity set. In
our dynamic graph representation, graph components such as links and
nodes are divided into segments by their temporal dimensions. Each
segment represents connectivity or an entity’s status in one sub-period.
Different colors have been used on segments to denote dynamic prop-
erty values of nodes or edges (see an example of dynamic graphs in
Fig. 2). By aggregating these dynamic property values on the related
link or node temporal dimensions, we achieve the goal of showing
dynamic networks’ temporal relations and property values in one single
static view.

3.2.1. Segmentation algorithms
The dynamics in large complex networks are reflected not only in

their topologies, i.e., entities may come and go and links may be created
and torn down constantly, but also in vertex and edges properties (PVt
and PEt

), and dynamic changes of values for each property (PVt i ∈ PVt
,

PEt i ∈ PEt
). To show these dynamics, we merge data with different

timestamps but belonging to the same VT and ET sets, and then par-
tition the related edges in our dynamic graph into k main segments,
where k > 1, and the related nodes into k − 1 main segments (or sec-
tors) according to their temporal dimensions (Fig. 3). Each main seg-
ment represents edge or node status in one sub-period t′ = t∕(k − 1),
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Fig. 1. Dynamic Network Analysis and Visualization (DNAV) tool combines multiple views: (1) Node Query; (2) Dynamic Graph; (3) Time Bar; (4) Node Selection
Pool; (5) Magnitude of Connectivity; (6) Network Entropy; (7) Spatial-temporal Dynamics; (8) Entity/Connectivity Amount Text Area.

Fig. 2. One example of our proposed dynamic graph, in which graph components, such as links and nodes, are divided into segments by their temporal dimensions.

and may be further divided into subsegments. The merged graph can
be represented by Gm

t = ⟨Vm
t , Em

t ⟩.
As shown in Fig. 3, among the k main segments of an edge, the first

(left-most) is used to indicate the initial time interval (denoted with
black). Due to the bi-directional links in dynamic graphs, this initial
segment helps identify the direction of temporal dimension. Nodes in

the dynamic graph are divided to k − 1 main segments in the order of
their clockwise direction, with the 12 o’clock position as the start time.

If during (i − 1) ∗ t′(2 ⩽ i ⩽ k) time period, an entity or link prop-
erty has multiple values, we further divide the ith main segment into
subsegments by the number of property values. For example, as shown
in Fig. 3, when i = 2, the second main segment is further divided into
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Fig. 3. Detailed view of segmentation. Edges and nodes in dynamic networks
are divided into k and k − 1 main segments, respectively. Colors are used to
encode both topological and property dynamics, e.g., black for start time, and
gray for disconnection. Property values are represented by additional colors,
which implicitly indicate presence of connections. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web ver-
sion of this article.)

two subsegments (denoted with different colors, i.e., red and green).
Suppose the chosen link property is the location information, the two
subsegments indicate that during this time slice, the communication
occurred at two different places. Similarly, the second main segment of
the right node in the figure can be further divided into two subsegments
(denoted with green and blue).

Algorithm 1 Segmentation algorithm.
Input: GT = ⟨VT,ET⟩, k
Output: Gw′

t = ⟨Vw′
t ,Ew′

t ⟩
1: procedure
2: Gw

t = ⟨Vw
t , Ew

t ⟩
(
tx ⩽ t ⩽ ty

)
← Data filtering ()

3: for each edge e in Ew
t do

4: for m ← 2 to k do
5: e[m][′property values amount′]=0
6: end for
7: for each record r in e do
8: ti = r.connTime
9: pi = r.propertyValue
10: time_ratio = (ti − tx)/(ty − tx)
11: segment_ratio = time_ratio∗(1-1/k)+1/k
12: for f ← 2 to k do
13: if segment_ratio≥ (f-1)∕k and segment_ratio< f∕k

then
14: e[f][′property values amount′]++
15: subsegment_sequence= e[f][′property values

amount′] −1
16: e[f][subsegment_sequence][′property value′]=pi
17: end if
18: end for
19: end for
20: save information of e into Ew′

t
21: end for
22: repeat steps 3–21 for Vw′

t with k − 1
23: return Gw′

t = ⟨Vw′
t ,Ew′

t ⟩
24: end procedure

The detail of the segmentation algorithm is illustrated in Algorithm
1. Given a raw dynamic graph GT = ⟨VT,ET⟩, for each edge of merged
segmentations e ∈ Ew

t ,
(
tx ⩽ t ⩽ ty

)
, we will iterate over each of its con-

nectivity records. Assuming one of its records has a timestamp value
of ti, we will first find out ti’s time_ratio (proportion of t) value by
using the following equation:

time_ratio = (ti − tx)∕(ty − tx) (1)

Similarly, for each vertex of merged segmentations v ∈ Vw
t ,

(
tx ⩽ t ⩽ ty

)
,

we will also iterate over each of its records and calculate their

time_ratio using the same equation.
As we have to keep the first main segment on an edge to indicate

start time, there will be only (k-1) main segments on each link to show
topology and property dynamics. Therefore, we need to normalize the
time_ratio value into segment_ratio, i.e., 1∕k ⩽ segment_ratio ⩽
1, where [0,1∕k) is kept for start time. The normalization equation is:

segment_ratio = time_ratio ∗ (1 − 1∕k) + 1∕k (2)

Then we will check which segment the record with ti timestamp value
belongs to, and calculate the property values that the related connec-
tivity or entity has in the segment by using statistical binning.

Algorithm 2 Segment color encoding algorithm.
Input: Gw′

t = ⟨Vw′
t , Ew′

t ⟩, k, ColorS, ColorE, total value #
⟨NPE

,NPV
⟩ of ⟨PEt i,PVt i⟩

Output: Gd
t = ⟨Vd

t , Ed
t ⟩

1: procedure
2: for each edge e′ in Ew′

t do
3: e′[1][‘color ’][0]=Color.BLACK
4: for l ← 2 to k do
5: if e′[l][′property values amount′]==0 then
6: e′ [l][′color′ ][0]=Color.GRAY
7: else if e′[l][′property values amount′]==1 then
8: e′ [l][′color′ ][0]=ColorS + e′[f][0][′property

value′] ∗ (ColorE − ColorS)∕NPE
9: else
10: g= e′[l][′property values amount′]
11: for q ← 0 to g-1 do
12: e′[l][′color′][q]=ColorS + e′[f][q][′property

value′] ∗ (ColorE − ColorS)∕NPE
13: end for
14: end if
15: end for
16: save information of e′ into Ed

t
17: end for
18: repeat steps 2–17 for Vd

t with k − 1
19: return Gd

t = ⟨Vd
t , Ed

t ⟩
20: end procedure

3.2.2. Segment color encoding algorithm
The color encoding scheme for segments is described in detail in

Algorithm 2. Dynamic graph with proper segmentation color encoding
for both links and nodes can be represented by Gd

t = ⟨Vd
t , Ed

t ⟩. As dis-
cussed earlier, the first segment is always colored black to indicate the
start of time. If one edge or vertex does not have any property value, it
indicates the link or node does not appear during such time period. For
the rest of k − 1 edge segments, if a pair of nodes disconnects during
(i − 1) ∗ (ty − tx)∕(k − 1), (2 ⩽ i ⩽ k) time period, the ith segment will
be denoted with light gray. Similarly, if during i′ ∗ t′ (1 ⩽ i′ ⩽ k − 1),
no status information of an entity is reported, a node segment will be
denoted with light gray.

The dynamics of link and entity property values are encoded with
colors other than black and light gray that indicate that an entity or
connection exists during that timestamp. If one connection or node
appears and has only one property value, then the ith main segment
will be denoted with one specific color according to its property value.
Otherwise if the connectivity has multiple property values, we will
further divide the related link’s ith segment into subsegments accord-
ing to the number property values that connectivity has during the
(i − 1) ∗ (ty − tx)∕(k − 1) time period. The gradient color spectrum
is defined in the following equation:

Colori = ColorS + i ∗ (ColorE − ColorS)∕n (3)

where n depends on the number of different property values after using
the binning method; i is in the range of 0 to n − 1. Color = {R,G,B} is a
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three-tuple containing integer values of red, green and blue, Colors and
ColorE represent the starting color, e.g., yellow (#FFFFCC), and ending
color, e.g., blue (#0093AF), respectively. Colors may be customized
according to different requirement of dynamic networks analytic tasks.

3.2.3. Dynamic graph layout
In dynamic graphs, one edge is drawn connecting two entities, i.e.,

the source and target entities. The direction of the edge is denoted by
arrows (source → target). If during time t, the source entity vi and the
target entity vj of one edge do not change, we will only draw one arrow
on the end of link closest to target entity. Otherwise, if two entities
swap roles during t, we will accordingly add arrows on both sides of
the related link.

Once arrows are added, the source position
(
esx , esy

)
and the tar-

get position
(
etx, ety

)
of each link must also be updated depending on

whether there is an arrow between the edge and the node. To calcu-
late the right position for each edge, we use the following equation to
calculate the arc tangent for links in our dynamic graph:

𝜃 = arctan 2(vty − vsy, vtx − vsx); (4)

In the above equation, vsx/vtx, vsy/vty represent x-value, y-value for
source/target entities, respectively. If there is only one arrow on the
link, we use the following equations to calculate links’ source position:

esx = vsx + cos 𝜃 ∗ vr (5)

esy = vsy + sin 𝜃 ∗ vr (6)

where vr represents the radius of node in the graph. Otherwise if there
are two arrows, we use the following equations to calculate links′

source position:

esx = vsx + cos 𝜃 ∗ (vr + aw) (7)

esy = vsy + sin 𝜃 ∗ (vr + aw) (8)

where aw represents the width of arrow in the graph. As there is always
one arrow at the side of target entity, the equation for links′ target
position will always be:

etx = vtx − cos 𝜃 ∗ (vr + aw) (9)

ety = vty − sin 𝜃 ∗ (vr + aw) (10)

Fig. 2 demonstrates the dynamic graph view, which contains graph-
related user controls, such as zoom & pan, drag & drop, and highlights
of selected nodes and links. The mouseover event on nodes will trigger
two actions. First, it will highlight a focus node and its surrounding
neighbors with changing size and color of shapes. Second, it will also
show detailed information about each individual node and link, i.e., the
detailed change pattern of node/link property values over time. This
feature helps investigators analyze both the topology and property tem-
poral dynamics. The color legend above the dynamic graph illustrates
the color codes used and their meaning for easy lookup.

3.2.4. Scalability
To improve scalability, we design and implement five interactive

data filtering mechanisms in DNAV. These mechanisms apply to both
the dynamic graph (DG) view and the network aggregation view (dis-
cussed in the next section). This is possible as the views in DNAV tool
are synchronized based on the “Linking and Brushing” (Koytek et al.,
2018) design principle.

The first of these filtering mechanisms is a time selection option,
implemented as a double-end time slider bar (Fig. 1-(3)). By moving
the time slider bar, users can select a customized time slice t from T
and generate a subgraph Gt = ⟨Vt,Et⟩, in which t represents the selected
time slice, from a given raw dynamic network GT = ⟨VT,ET⟩. This can

dramatically decrease the computational complexity since the tool only
needs to render a view from a subset of entire dataset.

The second mechanism is a maximum hop selection (dropdown
menu above Fig. 1-(2)). In our dynamic graph, each selected network
entity vi(vi ∈ vt) is regarded as the root entity. Network entities that
connect with a root entity directly are considered to be within one hop
of a root entity, and are referred as first-hop entities. Similarly, entities
which connect with the first-hop entities directly are within two hops of
a root entity and so on. Once analysts set the maximum hop value, the
selected root entities along with entitles that are within the maximum
hop value of any root entity vi and their related connections are added
into graph Gt = ⟨Vt,Et⟩; Vt includes the selected root entities and enti-
ties within the specified maximum hops of all root entities; Et signifies
the related communication set of Vt. We apply the breadth-first search
algorithm to iterate over network entities in the dynamic network and
only analyze a subgraph from the selected nodes rather than the entire
graph.

The third mechanism is to provide interactive property selec-
tion. The dropdown menus of both link and node properties (above
Fig. 1-(2)) enable users to choose one or more link properties PEt i ∈
PEt

and node properties PVt i ∈ PVt
. Complexity is managed by focus-

ing on one property at a time.
The fourth mechanism is node filtering by node weight, e.g.,

degrees, (as illustrated in the node selection pool on the upper-left
of the tool in Fig. 1-(1)). By default, nodes are sorted by their con-
nectivity degrees (either weighted by their connection magnitude or
unweighted). Node degrees is a relevant metric to measure the impor-
tance of nodes and prioritize the investigation process. With the node
selection tool, analysts can either type in one particular node ID or use
mouse to select single or multiple nodes (entity set vt ∈ Vt) to analyze
in the dynamic graph.

The fifth mechanism is to perform filtering based on edge weight
(as shown above the color legend in Fig. 1-(2)). We add a minimal
connection threshold input field for dynamic graphs. Once an investi-
gator input a minimal threshold value, we calculate the communication
records that each merged communication e ∈ Em

t contains. Only merged
communications whose communication records are greater than the
user-specified minimal threshold value, along with their related enti-
ties, will be added into Gw

t .

4. Dynamic networks - aggregation view

While dynamic graph visualization provides detailed view of net-
work dynamics, the inherent nature of node-link diagrams limits how
much information can be viewed even when efficient layout algorithms
are used. In addition to the scalability measures discussed in Section 3-
B4, DNAV includes additional aggregation overviews to help analyze
the entire network, i.e., Magnitude of Connectivity (MoC), Network
Entropy (NE) and Spatial-temporal Dynamics (STD) views. The statis-
tical data and data mining results augment the Dynamic Graph (DG)
view and provide a more complete view of dynamic networks based on
the linking and brushing design principles.

4.1. Magnitude of connectivity

Magnitude of Connectivity (MoC) view captures one essential
knowledge, i.e., network connectivity trend. In the MoC view (Fig. 4),
the x-axis represents time and the y-axis represents the normalized con-
nection count of network entities selected from the Node Query or
Node Selection Pool (Fig. 1-(1) and (4)). For comparison purpose, the
whole network’s connection count is also included in the chart. Since
the whole network has a much larger magnitude of connectivity, we
normalize the data of both whole-network and selected entities to a
range of 0 to N by using the following equation:

Cn = C − Cmin
Cmax − Cmin

∗ N (11)
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Fig. 4. Magnitude of Connectivity (MoC) provides a quick view for the trend of a whole network (or a subnetwork) in terms of network connectivity during the
selected time range. For example, at 2014-06-08 12:50:30 (shown in popup), whole network has a significantly large network activities.

where Cmin and Cmax represent the minimal and maximal connectivity
in the original data, respectively.

The MoC view includes several interactions as well. When users
move the mouse cursor over one time point, the normalized connec-
tion count in the corresponding time period (the selected time point
minus the previous time point) will be shown as in Fig. 4. When users
move the cursor over a certain network entity or the whole network in
the bottom part of the view, only the selected network/entity’s timeline
will be highlighted.

MoC is able to reveal the trend of the whole network, or selected
network entities. With MoC, we can quickly identify critical inflection
points. For example, in Fig. 4, spikes of network activity suggest further
investigation is needed at the selected time period.

4.1.1. Network entropy
While MoC shows the direct trend of dynamic networks in terms

of connectivity, the Network Entropy (NE) view utilizes statistical and
data mining methods to demonstrate the change of behavior as indi-
cated by network entropies. Changes of entropy can imply significant
network events (Wagner and Plattner, 2005). Like other views, NE is
automatically rendered based on the Node Query/Node Selection Pool
and the time-selection slider bar. The x-axis in the NE view (Fig. 5)
is used to show analytic time, and the y-axis represents selected net-
work entities. Like the MoC view, the whole network is automatically
displayed for quick comparison. NE also provides detailed time and
entropy dynamics once users move their cursor over a certain times-
tamp.

To calculate the entropy value for the whole network, we first cal-
culate the probability of appearance for each connection by using the
following equation:

Pi =
Ci∑n

i=1 Ci
(12)

where Ci denotes the frequency of the ith edge, and n refers to the total
number of connections in the dynamic network.

Next, we calculate the network entropy using the following equa-
tion:

E = −
n∑

i=1
Pi log2 Pi (13)

Methods that we use to calculate entropy values for individual net-
work entities are similar to methods we use to calculate entropy for
the whole network. After using the selected nodes as root nodes, we
differentiate connections involving the selected nodes from the list of
all connections. The resulting subnetwork is then used to calculate the
network entropy using the above equations.

For easier comparison, we normalize the entropy values to the inter-
val [0,1] as En:

En = E − Emin
Emax − Emin

(14)

where Emin and Emax are minimal and maximal entropy values, respec-
tively. After getting the normalized entropy values, we then partition
them into B buckets. Normalized entropy values which are in the range
of [(k-1)∗0.1, k∗0.1], (1 ≤ k ≤B) will be binned to 0.1∗k.

Color-coding is applied to represent different entropy values using
the gradient color spectrum as defined in Eq. (3), where n = B (in our
case 10). With this color model, we assign a color for each binned
entropy value. While normalized entropy values range from 0 to 1, the
gradient colors change correspondingly from the starting color (e.g.,
yellow) to the ending color (e.g., blue). If, at certain point, there is
a significant change in entropy value of the whole network or selected
network entities, potential anomalies are implied in the network or enti-
ties.

4.1.2. Spatio-temporal dynamics
Another characteristic of dynamic networks is their spatio-temporal

dynamics, e.g., entities may communicate with other entities in the net-
work at different locations over time. To analyze network connectivity
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Fig. 5. The Network Entropy (NE) view suggests inflection point where the network status shifts. Larger difference of network entropies implies significant network
events. For example, from 2014 to 06-08 11:31:19 to 12:50:30, node 839736’s entropy changes comparing to the previous time period.

patterns, we categorize all network connections according to one link
property, i.e., locations where the connections occur. We show the trend
for each of the locations in the network through the Spatio-temporal
Dynamics (STD) view (Fig. 6). As with previous views, STD uses nor-
malization and binning for clarity.

In STD, rows and columns represent the date and time, respec-
tively. Each cell is used to show one selected network property that
can be derived from node and edge properties. We can use con-
nection count as an example. Since location is a common prop-
erty associated with connections in dynamic networks, STD allows
users to choose multiple locations side-by-side for comparing net-
work property trends at different locations. For example, Fig. 6 shows
different peak network activity patterns at five different locations.
Shifts in patterns may suggest anomalous time and location val-
ues.

The dynamic network aggregation views enable a scalable approach
to dynamic network analysis and provide a quick starting point for
investigation by observing the trend of network topology and node/link
property changes. While each of these views explores different char-
acteristics of the dynamic network, when linked together, they can
provide a complete overview of the whole network or network enti-
ties. This allows users to further drill down into interesting time
periods or potentially anomalous entities by using dynamic graph
views.

5. System architecture and implementation

This section describes components of underlying system of DNAV
and its implementation details. An overview of DNAV system imple-
mentation is included in Fig. 7. We develop the DNAV tool based on the
server-client model rather than a desktop application by taking advan-
tage of scalability, accessibility and convenience. An investigator can
analyze and visualize her network from anywhere in the world with the

Internet and a web browser by visiting a URL. In the following section,
we describe each component in the server and client side.

5.1. Server-side

Data Formatter (DF) is implemented using Python script language to
parse raw data into a database for querying from the client side. Given
a network dataset, essential attributes for both entities and connections
are first extracted. Significant attributes include timestamp, source ID,
destination ID, and all relevant property information, e.g., location of
the connection. This data is then stored in a database (MySQL). We use
a database since DNAV includes multiple interactive functions such as
temporal navigation, max hops selection, entity selection, node/edge
weight filtering, etc. All of these operations depend on relevant infor-
mation that can be obtained with queries to such a database. The data
format is shown in Tables 1 and 2. There are two main tables, network-
Connectity and networkEntity.

In addition, a web (Apache) server services visual analytic requests
from a client machine. The web server utilizes Data Processors (DPs)
to query the database and generate JSON, CSV or TSV data files. The
DPs, written in PHP, extract and integrate information from the net-
workConnectity and networkEntity tables so that the information can
be presented in all visualizations of DNAV.

There are instances of DPs for each major view in DNAV. For the
MoC view, once a user selects certain network entities from the Node
Query (Fig. 1-(1)), an instance of DPs will be created. This will search
all connections involving the selected entities from the networkCon-
nectity table and calculate the total number of network records in
each time interval. The final results are then written to data files (e.g.,
CSV).

For the NE view, users need to select network entities from the Node
Query first. Instead of calculating network connections, a separate DP
calculates entropy values in each time interval for the selected network
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Fig. 6. Spatio-temporal Dynamics (STD) view provides location-based network dynamics. The example shows juxtaposition of network connectivity dynamics at
different time of three days at five difference locations.

Fig. 7. System architecture of DNAV based on client-server model.

entities and the whole network by querying information from the net-
workConnectity table.

For the STD view, a DP will first categorize all network connections
in the networkConnectity table by one of their spatial properties such as
location information. For each spatial property, the DP retrieves other
relevant properties from the database such as connNum, requestSize, or
responseSize, and calculates the sum of the selected property in each
time unit. Last, the DP writes the result into files.

Last is the dynamic graph (DG) view. In addition to selecting enti-
ties, users may select a time interval, maximum hops, minimal connec-
tion threshold, and edge/node property to analyze. A DP first queries all

Table 1
Attributes in networkConnectity table.

Attribute Name Example

sequenceId 0
connTime 2014-06-06 08:03:19
srcEntityId 439105
destEntityId 1053224
property1 value1
… …
propertyn valuen

Table 2
Attributes in networkEntity table.

Attribute Name Example

sequenceId 0
connTime 2014-06-06 08:03:19
entityId 1591741
property1 value1
… …
propertyn valuen

nodes and edges that appear in the selected time interval from the net-
workConnectivity and networkEntity tables. The DP will query records
to display on links that include the selected entities and meet the user
selection parameters. It will then segment the edges and nodes accord-
ing to the segmentation and coloring algorithms discussed in Section
3. The final result is written into JSON files which are read by the DG
view.
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5.2. Client-side

Users utilize a web browser to visually explore network graphs using
DNAV. Views are implemented using JavaScript with Data-Driven Doc-
ument (D3) libraries. The MoC view also uses the D3-based reusable
chart library (C3). Additionally, we have used JQuery for data trans-
mission and JQrangslides for the time slider bar.

As users switch between views, choose filter parameters, or make
selection, the operation is transmitted via AJAX to the server asyn-
chronously. For example, when users adjust the time slider bar or select
entities in the visualization tool, the selected start time, end time and
entities will be transmitted to the DPs on the web server via AJAX.
Consequently, DPs make queries to the back-end database server. The
processed data is then returned by the DP to client side for visualization.

6. Case study

In this section, we illustrate the usage of DNAV using two pub-
licly available datasets. One dataset (Whiting et al., 2015) is related
to dynamic wireless communication networks including user locations.
The other dataset (Grinstein et al., 2009) is comprised of dynamic net-
works from network traffic logs augmented by movement of employee
proximity card logs (e.g., wearable employee ID badges). Through thor-
ough case studies, we demonstrate how DNAV may be used to identify
and analyze the causes of potential anomalies in dynamic networks of
relatively large size.

6.1. Case: communication network with location information

In this case study, we utilize the VAST 2015 dataset (Mini-Challenge
2) (Whiting et al., 2015). The location and communication network
data are collected from visitors at DinoFun World theme park for an
event honoring a celebrity between June 6th and 8th, 2014 (Friday,
Saturday and Sunday). DinoFun World Park is equipped with sensor
beacons that record visitors’ movements and locations within the park.
All pathways in the park are covered by these sensors, as are the ride
check-in locations. Locations are not recorded while people are on rides
or inside attractions (including restaurants, stores, and restrooms).

Attributes of individual’s spatiotemporal records include time, visi-
tor ID, type of activity (either check-in or movement), and (x, y) coordi-
nates. The communication network data set contains 9410 IDs (visitors
or park services) and 4,153,329 connections. All visitors to the park are
assigned an ID, use a park app to check into the park and rides, and
to communicate with fellow visitors. Each inter-visitor communication
connection record has four attributes: time, sender ID, recipient ID, and
location where the communication is initiated. Location values can be
one of five zones: Coaster Alley, Kiddie Land, Wet Land, Tundra Land,
or Entry Corridor. The need for investigation is due to an incident of
vandalism in the park. A soccer celebrity (Scott Jones) was scheduled
to appear in two shows located at Coaster Alley, but the event did not
go as planned due to this vandalism. Thus, investigators need to ana-
lyze and understand the spatiotemporal communication patterns in the
park to attempt to determine when & where the vandalism occurred.

Given the dataset, we first categorize the (x,y) coordinates of each
data record into Thrill Rides, Kiddie Rides, Rides for Everyone, Food,
Restrooms, Shopping, Shows and Entertainment, Beer Garden, and
Information and Assistance, based on the location information from the
provided park map.

After loading the dataset into DNAV, we found that the communica-
tion patterns suggest that the park was opened around 8am and closed
around 12am each day. We then used the time bar to select the whole
time period (Friday, Saturday and Sunday) and choose the “weighted
degree” option. Entities in the selected time period were sorted by
their degrees and displayed in the Node Query. There were three IDs
which stand out for their large volume of connectivity (highlighted
with red rectangle in Fig. 1-(1))). They corresponded to ID 1278894

with a weighted degree of 380254, ID 839736 with a weighted degree
of 121630, and the external ID (−1) with a degree of 62076. As a good
starting point, we chose these three IDs and analyzed them with the
three dynamic network aggregation views included in DNAV. In each
of the three views, we found noticeable patterns.

6.1.1. Patterns in dynamic network aggregation views
The Magnitude of Connectivity (MoC) view shows the connectivity

trend of selected entities and the whole network. We learn from the
whole network (green line in Fig. 4) that there are more connections
on Saturday and Sunday than Friday. On the third day (Sunday) dur-
ing 2014-06-08 11:31:19 to 2014-06-08 12:50:30, the whole network’s
activities reach a peak.

Another pattern that the MoC view makes apparent is that ID
1278894 (yellow line) only appears periodically (12pm–10pm) on each
of the three days, i.e., from 12 to 1pm, 4–5pm, and 8–9pm, when it
tends to have a peak connectivity. For ID 839736 (blue line) and exter-
nal (red line), their connectivities have similar pattern. Based on this
information, we assumed that there might be significant events during
these time periods. To validate our assumption, we looked at the NE
view for additional patterns.

In the Network Entropy (NE) view (Fig. 5), we saw that the entropy
patterns of IDs 839736 and 1278894 are different from the whole net-
work. The whole network, as well as selected entities, have a large
entropy change (the whole network’s entropy changes from yellow to
blue on 2014-06-06) at the beginning and end of each day. We assessed
these changes to be normal as we expected the activity of the network
in its entirety to have a significant change between times the park is
open, and times it is closed. However, there are other entropy changes
for IDs 839736 and 1278894 during 2014-06-08 11:31:19 to 2014-06-
08 12:50:30 and 2014-06-06 14:39:12 to 2014-06-06 15:58:23, respec-
tively. The entropy value for ID 1278894 during this period ranges
from 0.603 to 0.595, which is less than the change for ID 839736
(0.629–0.541). Information shown in both NE and MoD views lead
our investigation to the abnormal 2014-06-08 11:31:19 to 2014-06-08
12:50:30 time period.

From the Spatiotemporal Dynamics (STD) view (Fig. 6), one pattern
is that the Coaster Alley tends to have more connectivity during the
hour intervals of 11–15 and 16 to 20. We formed a conjecture that
these two time periods correspond with two daily showtimes in that
area. When visitors gather around the stage during the show time, the
communication volume tends to spike. In addition, we could see that
the Entry Corridor’s connection number has an alternating high and low
pattern during the hour intervals of 12–21. It tends to have a higher
volume of connectivity from 12 to 13, 14 to 15, 16 to 17, 18 to 19,
and 20 to 21. This may indicate the peak times for tourists entering or
leaving the park.

6.1.2. Patterns in dynamic network graph views
We utilize the Dynamic Graph (DG) view to further analyze the three

IDs (1278894, 839736, and external) with the highest degrees of con-
nectivity and drill down into the suspicious time period (2014-06-08
11:31:19 to 2014-06-08 12:50:30) to reconstruct what happened dur-
ing this period.

As seen in Fig. 8, network connections associated with ID 1278894
always start at Entry Corridor (purple on edges). One example is high-
lighted with a red circle. After that, the connections disperse among all
locations. The network connections also exhibit bidirectional behavior,
as shown by arrows on the edges. The node segmentation (gray) indi-
cates there is no movement associated with its location. This pattern
implies that ID 1278894 is a fixed entity located at Entry Corridor and
may be part of the park’s own infrastructure. Visitors appear to use the
park’s mobile app to check into the park at the Entry Corridor and later
the rides at different areas in the park.
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Fig. 8. Communication patterns of ID 1278894 suggest connections always start at the location of Entry Corridor (purple link segments) and are bidirectional. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 9. ID 839736’s connections initiate at various locations but always terminate at the Entry Corridor (purple link segments) and are bidirectional. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

One distinction between the patterns of ID 839736 and ID 1278894
is that while ID 1278894 only communicates from 12 to 22 each day
at the Entry Corridor, ID 839736 communicates with other IDs during
the whole period (see Fig. 4). Another pattern apparent in Fig. 9 is that
while the initiation point of communications from ID 839736 varies,
the termination point is always in the Entry Corridor (purple). Like ID
1278894, connections with ID 839736 exhibit bidirectional communi-
cations, and the node segment information indicates a lack of move-
ment. These patterns, along with the high degree of connectivity for
ID 839736, support our conjectures. First, ID 839736 is located at the
Entry Corridor. Second, visitors always communicate with ID 839736
first, before it sends a reply. Third, ID 839736 is a component of park

infrastructure, located in the entry corridor.
The external ID (denoted by −1) stands out for its large connectivity

volume as well. When analyzing connectivity of the external ID, we
found patterns as shown in Fig. 10. One communication pattern is that
all connections are unidirectional. Combined with patterns from the
network aggregation views, we conclude that only people inside the
park can establish contact with the outside, and the external ID can be
any entities outside of the park.

After getting a better picture of communication patterns of the most
frequently occurring node IDs, we continued our analysis into the inter-
esting time period from 2014 to 06-08 11:31:19 to 2014-06-08 12:50:30
derived from dynamic network aggregation views. We move the time
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Fig. 10. The external ID (−1) is always the target entity of unidirectional connections from inside the park.

Fig. 11. Since 2014-06-08 11:54:14, IDs start to frequently communicate with ID 839736 and the external ID from the Wet Land, where the vandalism happened.
This is indicated by both green (Wet Land) link segments and orange (Creighton Pavilion) node segments. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)

bar to set the start and end time as 2014-06-08 11:29:05 and 2014-06-
08 12:52:56, select the minimum connection weight as 20, and choose
IDs 839736 and the external ID. A dynamic graph view is generated as
shown in Fig. 11. As seen from the visualization, many IDs start to fre-
quently communicate with ID 839736 and the external ID at Wet Land
(green) starting at 2014-06-08 11:54:14. The status shown on nodes
also indicates that many visitors are moving around Creighton Pavilion
(highlighted with a red circle).

Comparing the above patterns with Figs. 2 and 10, both IDs 839736
and the external ID do not exhibit similar connection patterns in other
time periods. We conclude that the vandalism was discovered around
2014-06-08 11:54:14 at Creighton Pavilion. Once the vandalism was
discovered, visitors initiated many communications with ID 839736
(park information desk). In addition, visitors started to communicate

with the external ID. We interpret this as communications with absent
friends or family members to relay news of an unusual event in DinoFun
Park.

6.2. Case: network traffic with employee proximity cards

In this case study, we will analyze a netflow-like network traffic log,
along with logs of employee movement recorded by proximity cards.
This data is taken from the two VAST 2009 (Mini-Challenge 1) datasets
(Grinstein et al., 2009). The first dataset is proximity card log. Proxim-
ity cards are plastic ID cards, often worn as badges, with an embedded
RFID chip and antenna. Each embassy employee uses such an identifi-
cation token to open doors to and within the Embassy. Each data record
contains an employee number, proximity card number, date and time
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Fig. 12. The MoC view of one month’s traffic data suggests a peak network connectivity on 01/23/2008 and little connectivity over weekends and holidays.

Fig. 13. The NE view suggests that during the whole month, except for weekends and holidays, the network entropy of the whole network has no significant change.

of use, and location of use. The second dataset is network traffic logs.
Each employee has been assigned a desktop computer with a static IP
address for use in their daily duties. The log data consists of the com-
puter IP address, employee ID of the computer’s owner, and outgoing
and incoming activity from the computer including: destination sites,
payload (request and response data), and port numbers. Both datasets
cover the same period of one month.

An employee was suspected of sending data to a criminal organiza-
tion from within the Embassy. We needed to investigate the situation.
First, we loaded both datasets into DNAV, and explore potential pat-
terns in the tool’s dynamic network aggregation views.

6.2.1. Patterns in dynamic network aggregation views
The MoC view (Fig. 12) demonstrates an overview of network con-

nectivity over the entire month of January 2008. Weekdays exhibit sim-
ilar connectivity behavior with connection numbers ranging from 900
to 1000 (normalized) except for weekends and a holiday (01/21) where
there is almost no connectivity. The network reaches a peak connectiv-

ity of 1000 on 01/23/2008.
We could also see a similar pattern from the NE view (Fig. 13).

The entropy value of the whole network changes dramatically between
weekdays and weekends but not as much between the weekdays. We
concluded that the suspect in the Embassy is able to leak data to outside
without changing the normal distribution of connectivity.

Since the suspect employee sent data to a criminal organization, it is
reasonable to consider traffic with large request payload (upload traffic)
but small response payload (download traffic) to be anomalous. To try
another investigative approach, we loaded the STD view (Fig. 14) and
observed the request/response rate patterns. In this view, the rows are
days of the month and columns are the IDs of each computer in different
restricted areas of the Embassy.

Fig. 14 suggests there are several suspicious machine IDs that con-
tinue working during weekends or holidays, such as IDs 8, 10, 16,
20 and 32. Additionally, there are a few other machines with high
request/response rates that drew our attention. On the other hand,
machine IDs 25, 26, 36, 37, 48, and 49 have low request/response rates.
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Fig. 14. The STD view in which rows are days of the month, columns are machines at difference locations, and cells are request/response payload ratios. Machines
with high network connectivity during off-hours or with high request/response ratios are suspicious for leaking data to outside.

Fig. 15. The DG view shows IP address 37.170.30.250’s connections’ temporal trend.

We therefore judged that there is a low probability these were used by
the suspect employee.

6.2.2. Patterns in dynamic network graph views
After analyzing patterns in the dynamic network aggregation views

of the whole network, we drilled down into specific machines by using
the dynamic graph (DG) views. We first moved the time slider bar
to include the entire month, and select the “Request” attribute from
the Node Query options. IDs were sorted according to the payload
requested by internal machines in descending order. We saw from the
Node Query the top two IP addresses: 37.170.30.250 (a total request
payload of 6015113957) and 100.59.151.133 (a total request payload
of 144634785). Since we assumed the machines used by the suspect
employee to leak information to his contact will most likely generate
a large payload, we chose these two machines to further analyze their
temporal properties in our dynamic graphs.

In the DG view (Fig. 15), we choose port numbers and
request/response payload sizes as the link properties. This reveals that

all internal machines are communicating with 37.170.30.250 through
port 25 (pink links) and they tend to have a comparatively small pay-
load of both requests and responses (yellow links). Since port 25 is
the standard port for Simple Mail Transfer Protocol (SMTP), the ubiq-
uitous protocol for servers exchanging email, we assumed IP address
37.170.30.250 is an email server for the embassy and considered it as
normal.

We then analyzed the machine with IP address 100.59.151.133.
As seen from Fig. 16, there were 12 machines connected with IP
100.59.151.133 during the month. First, we selected port number as the
link property. These internal machines connect to IP 100.59.151.133
using destination port 8080 (orange links). Port 8080 is commonly used
for auxiliary web services.

We then selected payload size as the link property. These internal
machines have large request/response ratios, i.e., high request pay-
load (blue) but low response payload (yellow). These patterns drew
our attention to machine 100.59.151.133, which we suspected belongs
to the criminal destination IP outside of the Embassy. Twelve interior

76



Q. Liao et al. Journal of Network and Computer Applications 124 (2018) 63–79

Fig. 16. Suspicious outside IP 100.59.151.133 communicates with 12 interior machines.

Fig. 17. Machines are used to communicate with outside IP 100.59.151.133 while their owners were not in their offices but in the restricted area (yellow segment
on the center node). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

machines (37.170.100.8, 10, 13, 15, 16, 18, 20, 31, 32, 41, 52, and 56)
are thus likely the machines that the spy in Embassy uses to contact
with the criminal organization.

To further verify our suspicion and to identify who is the spy
within the network, we analyzed each of the 12 machines’ behav-

iors during their period of communication with IP 100.59.151.133.
We selected location information in the employee proximity card log
data as the node property. We found that all of these machines’ com-
munications with IP 100.59.151.133 are made without the machines’
owners’ presence in their office. Fig. 17 demonstrates two examples.

Fig. 18. Employee 30 went into the restricted rooms without prox in, which is against the policy.
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From 2008-1-10 13:45:57 to 2008-1-10 15:11:11, employee 31 was
in a restricted room (prox-in-classified, yellow node), but his allotted
machine was used to communicate with outside IP 100.59.151.133.
Same with employee 52, his machine was communicating with IP
100.59.151.133 while he was in other restricted area during 2008-1-
31 8:58:52 and 2008-1-31 10:19:50. These patterns reminded us that
the spy employee might want to hide his illegal behavior by using
other employees’ computers while these employees are out of their
office.

Finally, we narrowed our focus to behaviors of each neighbor-
ing employee of the owners of the 12 victim machines. One sus-
picious employee draws our attention. While 12 machines connect
with 100.59.151.133, employee 30 is the only active neighbor that
badged into the building but did not badge into the restricted room.
As seen in Fig. 18, there were three days, January 10, 17 and
24, when employee 30 went into the restricted room without badg-
ing in. This is against the policy that employees are required to
prox into and out of the restricted area and not tailgate (enter
without badging in by following a coworker who did badge in).
All of the patterns found above suggest employee 30 is the spy
employee.

In summary, through the case studies, we demonstrate the effec-
tiveness of DNAV in detecting communication patterns in dynamic net-
works through temporal segmentations in nodes and edges. Although
the datasets in the case studies mostly involve spatiotemporal infor-
mation, DNAV exhibits its powerfulness in terms of generality since
the node and edge properties can be any feature of interest, includ-
ing but not limited to time, location, port number, IP address, user,
content, etc. In case of larger datasets, the dynamic graph view alone
is cumbersome to solve entire problem. We find it better to combine
the dynamic graph view with other visualizations such as entropy sta-
tistical views that allow tiered knowledge ranging from overview to
details.

7. Conclusion

The analysis of large-scale, complex and dynamic networks is impor-
tant and has many applications. DNAV provides an alternative visual
analytic approach to pattern recognition and anomaly detection in
dynamic networks. Aggregation overviews and dynamic graph views,
when combined, provide better scalability and insight than any indi-
vidual perspective. In particular, dynamic graphs utilize spatiotem-
poral segmentations of graph components, such as nodes and links,
to encode both topological and property dynamics associated with
evolving networks. We demonstrated the usage of DNAV through case
studies and suggest potential benefits provided by DNAV in under-
standing other types of dynamic networks. Future work is needed
to explore alternative methods to improve scalability for larger net-
works.
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