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Abstract
Network management is challenging due to ever increasing complexity and dynam-
ics of network interactions. While many changes in networks are normal, some 
changes are not. One of the daily tasks of network administrators is to identify and 
analyze these abnormal changes that are hard to find by traditional security mech-
anisms (IDS, firewall, anti-virus, etc.). This research conducts dynamic network 
analysis (DNA) and presents practical methodologies of data stream mining based 
dynamic link anomaly analysis (DLAA) using novel sliding time window structures 
and network analytics metrics. DLAA employs spatiotemporal link analysis to detect 
anomalies from dynamic network graphs. We formally define the network link 
anomaly types and use key link-structure similarity metrics and time-weighted func-
tions to model the dynamics of topological changes. The methodology is generic 
in that it does not require additional information from nodes or links but only the 
topology itself. The DLAA framework consists of three algorithmic components 
including sliding time window, link scoring and link anomaly detection algorithms. 
Through experimental study on publicly available dataset, we demonstrate that the 
proposed DLAA framework has the capability to construct effective knowledge 
structures for measuring the security levels of large scale dynamic networks, and to 
provide insight for generalized DNA in network security domain.
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1 Introduction

Networks are everywhere, from enterprise computer networks to cloud comput-
ing infrastructures, from the Internet of computers to the Internet of Things, and 
from social networks to biological networks. The analytic complexity of networks 
has been increasingly challenging over the past decades due to the dynamics of 
network interactions and ever growing size of networks known as the big data 
era. Large-scale networks could suffer from threats from all aspects. For example, 
network anomalies such as failure events of IP backbone, denial of service (DoS) 
attacks, worm propagation, and network equipment outages, have distinct charac-
teristics but are all potential threats, which may strongly affect the functionality 
and dependability of networks in varying degrees.

Dynamic network analysis (DNA) [1] is an emergent scientific field in network 
science. There has been an increasing interest in data stream mining based DNA 
for network security. The major challenge of this dynamic network analysis is 
that it is computationally expensive to separate anomalous changes from normal 
changes due to the constant structure changes in massive connectivity in a short 
amount of time. These anomalies are important and may be related to faulty hard-
ware/software, misconfiguration, or security related events caused by malicious 
users and applications. Anomaly analysis is extremely useful in many domains. 
For example, network managers and administrators need to monitor the latest 
traffic graphs to increase situation awareness for both effective troubleshooting 
and time-efficient security-related investigation. While there has been effort in 
anomaly-based intrusion detection [2, 3], the anomaly analysis of dynamic net-
work links has remained challenging.

In this paper, we study a branch of DNA, i.e., dynamic link anomaly analysis 
(DLAA) that focuses on detection of connection anomalies based on the graph 
topological structures such as information from network flow data. For better 
defense against the increasing 0-day attack, we aim to utilize behavior or learn-
ing based approaches, in particular, link prediction algorithms to analyze network 
connections. The challenges lie on a few key characteristics of anomaly detection 
that are fundamentally different from link prediction tasks [4]. Although link pre-
diction [5, 6] may predict whether a pair of nodes that have not been connected 
in the past will ever be connected sometime in the future, its focus does not usu-
ally consider pairs of nodes that have previously been connected. The fundamen-
tal deficiency of traditional link predictions in the security domain is that they 
do not consider the dynamics of network connections, e.g., the on/off patterns. 
It has been observed that networks are not only becoming much larger but much 
more heterogenous, complex and dynamic as well. Taking computer networks for 
example, the massive amount of traffic among the computing nodes is constantly 
changing, e.g., users and applications may come and go at any time, establishing 
and tearing down the connections.

The contribution of this paper is notably the development of DLAA framework 
by incorporating link anomaly scoring and link anomaly detection algorithms for 
dynamic network graphs. To keep the algorithms generic, our approach does not 
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need background information such as node attributes, but is based on the network 
topologies. To solve the spatio-temporal link analysis challenges, we build our 
approaches on the dynamic graph structures by including a time dynamic function 
and similarity measurement based on the evolving network topologies in consec-
utive time windows. Intuitively, the frequency of links’ appearances implies the 
importance of such connections. It is reasonable to assume the connections close 
to the time of investigation may receive more emphasis than connections hap-
pened much earlier on due to the temporal locality of packet exchanges and net-
work flows. We further use the topological structures as similarity measurement 
such as Jaccard coefficients and Katz measure, and merge them into one coherent 
link anomaly methodology.

Different types of anomalies are formally modeled by considering every possi-
ble combination of previously unlinked/linked nodes and currently unlinked/linked 
nodes. In each time window, each pairwise nodes are assigned a normalized similar-
ity score according to the aforementioned metrics and functions to measure their 
importance. The scores will be used to help determine whether the connections will 
be built or torn down in next time phase for a variety of situations. Based on the 
actual connectivity in a current snapshot graph, we are able to judge whether each 
link is anomalous or normal from the differences between the expected result and 
the reality. Through a case study and performance evaluation on publicly available 
dataset, we illustrate the effectiveness of the DLAA by comparing the accuracies, 
true and false positives and negatives. We believe the study has immediate benefits 
for network management in terms of security investigation and troubleshooting, and 
the methodologies are also general enough to have potential impact on many other 
types of networks.

The remaining of the paper is organized as follows. Section 2 discusses related 
work and compares proposed algorithms with exiting approaches. Section 3 defines 
the similarity metrics and anomaly types, and describes the key algorithms for 
dynamic link anomaly analysis. We then evaluate the effectiveness of the proposed 
dynamic link anomaly analytic methods through both extensive performance trade-
off study (Sect. 4) and case study (Sect. 5) using metrics such as ROC curves, accu-
racy and error rates, sensitivity, specificity and precision for various combinations of 
true/false positive/negative rates. Finally, Sect. 6 concludes the work.

2  Related Work

In areas of security management, network intrusion and anomaly detection [2, 7] 
can be roughly categorized as signature-based and data mining-based. While sig-
nature-based schemes have the advantage of low false positives, signatures require 
well defined patterns in advance, making the detection of 0-day exploits impossible 
as well as less effective for encrypted activities or self-modifying worms. There has 
been progress in using network behavior anomaly detection (NBAD) [8] to detect 
anomalies that are not pre-identified or not able to extract a clear pattern. As an 
integral part of network behavior analysis, NBAD still needs to establish the knowl-
edge of normal network or user behavior over a certain period of time. Recent trend 
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on deep learning-based network anomaly detection via neural networks has shown 
promising results [9]. While machine learning based anomaly detection is promising 
since pre-defined signatures are not required, challenges remaining to researchers 
are the lack of attack-free clean training data, difficulty of evaluation, and high false 
rates [10].

Networked data has been historically represented in network graph format, and 
anomaly detection in graphs has gained awareness among researchers. For exam-
ple, anomalies can be manually identified in network flow data by applying the sub-
space method using multivariate time series of byte counts, packet counts and IP-
flow counts [7]. Neighborhood formation has been studied for bipartite graphs [11]. 
OddBall [12] detects anomaly in graph by assigning an “outlierness” score to each 
node. These research studies focus on neighborhood, or sphere, around each node, 
or the ego subgraph. Various distributions such as power laws in density, weights, 
ranks and eigenvalues of these neighborhood sub-graphs have been proved useful 
for anomaly detection. Graph-theoretic approach [13] has also been applied to detect 
anomaly in email networks from the publicly available Enron email corpus. In addi-
tion, both link structures and semantics (attributes) have been used to detect outliers 
in complex networks [14].

Although there has been significantly amount of work on anomaly detection [3] 
looking at various aspects of network anomalies (e.g., traffic volume variations, 
packet/flow classifications, DoS/DDoS attacks, etc), we note that the different focus 
of this work is on detecting link anomalies in dynamic graphs that exhibit on/off pat-
terns. We complement existing work in the network security management domain 
by investigating harder questions, e.g., given only two graphs without any other 
knowledge, can we tell possible anomalies (4 types of edge anomalies as illustrated 
in Fig.  2)? The proposed algorithm is also generic that is based only on network 
topologies and is not restricted to IP networks.

Dynamic network analysis (DNA) [1, 15] aims to understand the complex and 
dynamic features of modern networks. DNA has profound implications for many 
important tasks. For example, a network manager may need to gain situational 
awareness and detect anomalies in information technology network for potential 
faults and security breach. DNA with network metrics for centrality and clustering 
can be applied to engineering design projects consisting of networks of people and 
activities [16].

Dynamic network analysis is highly challenging due to spatial–temporal network 
dynamics in terms of both topological structure and attribute evolution. Anomaly 
detection approaches in dynamic networks can be either distance/similarity-based 
or community-based. Community detection in both static and dynamic networks 
is helpful to detect network anomalies [17]. A statistical infinite feature cascade 
approach is proposed to detect link anomaly in dynamic social networks [18]. In 
addition, the evolution of relationships between entities in DNA can be understood 
through dynamic graph visualization [19].

Among the network metrics used, the Jaccard index, which is originally designed 
to measure the similarity between sample sets, can be useful to measure nodes’ 
community similarity. The Katz index [20] is useful in measuring the importance 
of nodes (or centrality). Both measures have seen applications in social network 
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analysis. Jaccard based scores, while efficient to compute, may be restricted to local 
neighborhood only. Calculating the Katz measure may be slow if designed improp-
erly as the graph size reaches up to a certain extent due to its cubic complexity. 
We combine these measures and time factor to compute one overall score for link 
anomaly analysis in dynamic networks.

In data mining domains, link mining [21, 22] and particularly link predic-
tion algorithms [4, 23] are introduced as one of the popular graph mining areas. 
Researches summarize recent progress in link prediction and show its applications 
for a variety of domains such as social networks [5, 6], co-authorship networks [24], 
healthcare and bioinformatics [25]. However, most works in link prediction are often 
interested in predicting whether a pair of nodes that are not connected previously 
will ever be connected in the future. Although the link prediction algorithms will 
predict the feature connections in the graph, most of them use a static graph as learn-
ing set without considering the temporal information inherent in the traffic data. In 
computer security research, the network is highly time dynamic [26] and traditional 
link prediction hardly works well on these datasets with spatiotemporal dynamics. 
Instead, we focus on the task of link anomalies [11–13, 27–29] and address more the 
dynamic nature of link anomaly with “on/off” behaviors, e.g., whether and when a 
previously connected link will become disconnected, and vice versa.

3  Dynamic Link Anomaly Analysis

In this section, we begin by discussing how graphs may be derived from network 
traffic log by considering the source and destination IP addresses and port numbers. 
We then introduce the graph node similarity metrics and time dynamic functions 
for measuring the spatiotemporal dynamics of network. After describing how the 
system works and all possible situations for link anomaly predictions, we discuss the 
core link anomaly detection algorithms.

3.1  Graph Construction

The system processes the Cisco netflow-like data, which contains important infor-
mation such as source and destination IP addresses, port numbers, start and end 
timestamps, protocols, etc. We primarily focus on two types of graphs, i.e., IP 
graphs and IP-port graphs. In IP graphs, each node represents one IP address and the 
edge represents the network connection between the source and destination IP pair. 
The IP-port graphs further consider the application protocols by introducing the port 
numbers, e.g., srcIP → srcPort → dstPort → dstIP is one possible way to construct 
the IP-port graphs, resulting in heterogenous graphs. Additional parameters such as 
ports may be useful in settings such as traffic flow classification [30].

For any moment, we have two types of graphs for anomaly detection: the prior 
graph and the current graph. The prior graph is constructed by combining all net-
work connections from netflow data during the past, and will be updated for each 
sliding time window. The prior graph is the one that our link anomaly algorithms 
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can use to learn from the past and make educated guess on future connections. Since 
we do not have the luxury to do supervised learning, i.e., no one can ever mark 
each connection as either good or bad, the unsupervised learning is more suitable 
for learning the normal connection behaviors directly from the prior graph. It is 
therefore challenging that in real world situation, the prior graph may contain both 
clean data and attack data. It might be useful to freeze or adjust the models once 
anomaly has been confirmed to eliminate or minimize the data noise from the prior 
graph. In contrast to the prior graph, the current graph is built based on the network 
traffic in netflow data in the current time window. The current graph represents the 
most recent traffic reported by the netflow and is the one upon which our link anom-
aly detection algorithm makes a decision. Both the prior and current graphs will be 
rebuilt when the sliding time windows move, as illustrated in Fig. 1.

Real world networks are dynamic, i.e., constantly changing. Some changes are 
normal while others are not. To detect abnormal changes, we utilize spatiotempo-
ral metrics to measure the topological changes in time-series snapshot graphs, as 
explained in the following sections.

3.2  Similarity Metrics

Let G = (V ,E) be the graph that represents the topological structure of a gen-
eral connected network. Edges in the graph are denoted by e = (u, v) ∈ E , where 
u, v ∈ V  , and V is the set of nodes or vertices. For each u ∈ V ,Γ(u) represents the set 
of u’s distinct adjacent nodes (or neighbors). In addition, the set of paths between u 
and v is defined as paths(l)

u,v
 where l represents the exact length of the path. Each edge 

e ∈ E counts 1 for unweighted graphs and w(e) for weighted graphs, in which w ∈ W 
is referred to as the related edge e’s weight, and W is the set of edges’ weights.

3.2.1  Jaccard’s Coefficient

The Jaccard coefficient is well known to measure the similarity between sample sets, 
which is defined as the size of the intersection divided by the size of the union of the 
sample sets [31]. Particularly, in the graph G, for each pairwise nodes v, u ∈ V  , the 
coefficient is defined as the ratio between the number of their common neighbors 
and the number of total neighbors, namely:

Fig. 1  The sliding time window will update and rebuild the prior graph and current graph of network 
connections
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In our approach, for instance, it indicates whether two network nodes, e.g., clients, 
servers, routers, have a large percentage of overlapping destinations regardless of the 
absolute number of connecting targets.

3.2.2  Katz Index

Originally proposed as a path-ensemble based proximity measure by Katz [20], the 
Katz measure is a variant of the shortest-path measure [31], which considers that the 
more simple paths there are between two nodes and the shorter these paths are, the 
stronger is the relationship of two nodes. The measure is defined as:

where 0 < 𝛽 < 1 is a parameter ensuring that the shorter path contributes more to 
the score. However, the Katz measure has two main limitations when applied to real 
world networks. The first one is its cubic time complexity which makes it hard to 
be feasible for a large network. Since the shorter paths dominate the score, we set 
a maximum path length for larger graphs, i.e., only the paths shorter than the max 
value would count towards the Katz measure. The second limitation of the Katz 
measure is that it is inherently not geared towards the needs of some types of link 
anomaly detection. For example, the Katz measure for two nodes that are already 
connected could be nearly equal because the shortest path for them is only one hop 
away, which could dominate the score in most unweighted graphs. For the set of 
connected node pairs, utilizing Jaccard’s coefficient may make more sense. Another 
challenge lies in heterogeneous graphs, such as those containing both IP addresses 
and port numbers, since some of pairwise nodes never have directly connected nodes 
as their common neighbors. Moreover, in some cases, only one snapshot graph is 
not enough for extracting normal nodes’ connecting behaviors. Therefore, for the set 
of connected node pairs, we apply a time frequency function with the third temporal 
dimension and a sliding-window learning mechanism.

3.3  Time Frequency

We use a weighted time frequency function [32] to consider the time dynamics of con-
nected nodes for link anomaly detection:

(1)J(u, v) =
|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|

(2)K(u, v) =

∞∑

l=1

� l ⋅
|||paths

(l)
u,v

|||

(3)P
�
Li
�
=

∑N

t=1
w(t) ⋅ d

∑N

t=1
w(t)

, dt,i ∈ (0, 1)
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The appearance probability functions can be either weighted or unweighted. The 
weighted form (Eq. 3) takes a nonlinear time weighting function w(t) (Eq. 4), i.e., 
the appearance of links at later snapshot graphs (or in other words closer to the time 
of investigation) should have higher weights over the earlier graphs. Both Eqs.  3 
and 4 are normalized between 0 and 1,where P(Li) represents the probability of ith 
link; t = 1, 2,… ,N ; N denotes the total number of snapshot graphs; and dt,i takes a 
binary form to denote whether ith link appears or not at time t. It is reasonable to 
make such assumption due to the inherent temporal locality of network connections. 
Schemes such as network caching and Cisco netflow export also assume if a packet 
is observed between a source–destination IP/port pair, it is likely that the source will 
send packets again to the destination in the near future, thus later appearance of con-
nections is more important (thus having higher weight) than earlier ones.

3.4  Link Anomaly Situations

Theoretically, for each pairwise connection, there could be as many as 16 possi-
ble situations of link anomaly prediction outcomes, as shown in Fig.  2. Each sit-
uation individually depends on its connection status in both the prior and current 
graphs as well as the verified results (i.e., whether it is really an anomaly or not). 
Figure 2 shows a decision-tree-like structure to illustrate the hierarchy of relation-
ships regarding the 16 situations. There are four probabilities of connecting status 
between two vertices in the previous time slice and the current time slice. First, in 
the build section, a pair of nodes do not connect in the prior graph but are connected 
in the current graph, i.e., they build new connections. Second, in the keep section, 
two nodes are already connected in the prior graph and are still connected in the 
current graph, or in other words, they keep their existing connections. Third, in the 
tear section, a pair of nodes are connected in the prior graph but are disconnected 
in the current graph, i.e., they tear down the connections. Lastly, in the never linked 

(4)
w(t) = e

−�

(
1−

t

N

)

Fig. 2  The complete 16 situations of dynamic link anomaly analysis and detection
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section, two nodes are never connected in either the prior or the current graph. For 
each of the above connection status, there could be two branches: either predicted 
anomalous or not anomalous. For each anomaly prediction, the prediction can turn 
out to be either correct or wrong, resulting in true positive (TP), false positive (FP), 
true negative (TN) and false negative (FN).

For instance, in a build scenario, a new connection made to a financial server 
from a workstation in the sales department, which has not connected to the server 
before, can be suspicious. It could indicate that a malicious user or an attacker is 
trying to compromise the machine and steal sensitive information. This type of link 
anomaly could be useful to detect security-related incidents such as port scans, DoS 
attacks, Trojan, worm and various malware infections.

Another example would be in the tear section, a DNS server that is previously 
connected by clients is no longer connected with a few machines. This could be 
indication of various issues possibly due to hardware faults, link failures, firewall 
issues, or simply misconfigurations. This type of link anomaly detection could be 
useful for fault localization, debugging and troubleshooting. Since both the mali-
cious activities and equipment failures need at least one connection either in the last 
time slice or the current time slice, in this paper we analyze the first three scenarios 
while leaving the last never linked case for future study. In Sect. 4, we evaluate and 
discuss the various situations of link anomaly detection.

3.5  Link Anomaly Algorithms

In this section, we discuss our link anomaly algorithms via two core modules: the 
link anomaly scoring algorithm (Algorithm 1), and the link anomaly detection algo-
rithm (Algorithm 2). The link anomaly scoring algorithm will calculate links’ con-
necting scores based on the node similarity and weighted time frequency functions 
discussed earlier for various link anomaly situations, i.e., keep, build and tear. The 
link anomaly detection algorithm then generates the anomalous link list based on the 
scores using user-defined thresholds.
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3.5.1  Link Anomaly Scoring Algorithm

According to different link anomaly situations (Sect.  3.4), we use node similarity 
functions (Eqs. 1 and 2) and weighted time frequency functions (Eqs. 3 and 4) sepa-
rately to calculate pairwise node connection scores. For those links that have not 
been built yet in the past time slice but are connected at present, we use similarity-
based algorithms. For links that have already been built in the past time slice, we 
select the time frequency algorithm, which predicts links’ connecting possibility for 
the current graph. The algorithm extracts links’ density on the basis of connections’ 
frequency using build-and-tear patterns.

We first pick both a local similarity index and a global similarity index, i.e., the 
Jaccard Index and the unweighted Katz index. For each unlinked pair of nodes u and 
v in the prior graph, the Jaccard index value will reflect u and v’s local circumstance 
of neighborhoods. Link probability will be higher if u and v have more common 
neighbors, which carry more weights. We apply the Katz index to measure u and v’s 
linking possibility by considering the topological distance between u and v in the 
prior graph. Simply put, the assumption is nodes that are closer and have more paths 
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between them are more likely to connect than nodes that are remote. In particular, 
all simple paths between u and v, which could be limited by hops, participate in cal-
culating the Katz index of u and v. Furthermore, all the paths eu,v and their lengths 
wu,v are used to predict the likelihood of direct connections between the two nodes. 
In order to solve the cubic complexity of the Katz measure and make the calcula-
tion more efficient for large networks, we apply a heuristic method of partial simple 
paths by using the maximum length as a limiting factor. Paths which are longer than 
the maximum value will not be counted, partly due to the fact that in most cases, 
paths of shorter lengths will dominate the measure.

For each linked pair of nodes u and v in the prior graph, weighted time frequency 
function is applied based on the temporal locality assumption in which connec-
tions made closer to the time of investigation will be more likely to reconnect than 
those connections happened at earlier time. As a result, the later-built links’ scores 
will be much higher, suggesting a higher possibility of connection in the current 
graph. In addition, the Jaccard index may also be applied to linked nodes to meas-
ure their immediate neighborhood similarity. Intuitively, if two nodes have already 
been connected and have many common neighboring nodes, the chance for the two 
nodes to stay connected or to be connected again in the future is very high. To com-
bine the scores from the above measures, weighted sums are adopted, as shown in 
Algorithm 1.

The computational complexity of the link anomaly scoring algorithm is polyno-
mial time O(n3m) , where n = |V| is the number of nodes in the prior graph, m = |E| 
is the number of network connections in the current graph. Since it is less efficient 
to compute scores for all pairwise nodes in the prior graph, only nodes that are actu-
ally connected in the current graph are used to compute the scores, thus m times. 
Relevant methods such as the Jaccard, Katz, and time frequency scores are applied 
for each link. Due to the cubic complexity time of the Katz measure which domi-
nates the time complexity ( O(n3) ), the overall complexity is O(n3m) . If other faster 
algorithms, such as Fast Katz [33] that runs at O(n + m) , are used, the computational 
complexity could be further reduced to O(m2 + mn).
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3.5.2  Link Anomaly Detection Algorithm

Our prediction on whether a link in a network graph is anomalous or normal is 
based on the consistency between the link scores from the prior graph and the actual 
linkage in the current graph. For example, suppose a link existed in the prior graph 
and the link score is considerably high (over a specified threshold). If such a link is 
torn town in the current graph, that is in contrary to what is suggested by the scores. 
Therefore, we decide such a link disconnection is anomalous. For another example, 
suppose there is a connection in the current graph, however, the score of such a link, 
which may or may not exist in the prior graph, is quite low. Since the score is in con-
trary to the fact, we would consider the connection as anomalous because the two 
network elements are unlikely to be connected according to our prediction. Simi-
larly, if the actual network connection matches our prediction, appear or not appear, 
based on the scores, then we consider these links as normal. The logic is summa-
rized in Algorithm 2. For the link anomaly detection algorithm, the computational 
complexity is time O(m) where m is the number of network connections.

While implementation specific, the score tables are divided into three segments, 
i.e., keep (c–c), build (d–c), and tear (c–d) tables. The keep table stores all connec-
tions that exist in both prior and current graphs. The build table stores connections 
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in the current graph but not in the prior graph. The tear table stores connections that 
exist in the prior graph but not in the current graph. The three thresholds ( {�k, �b, �t} 
are for each table, respectively. Assuming the score tables are sorted by the score 
values (top = highest; bottom = lowest), the thresholds in both keep and build 
tables are on the bottom part meaning the connections have low scores but actually 
appeared. On the other hand, the threshold in the tear table is at the top meaning the 
connections have high scores but did not appear. Both are considered anomalies.

Note that the thresholds refer to the percentage of total links that will be predicted 
as anomaly. We use percentage thresholds in the score table to predict the appear-
ance of links. Choosing the ideal thresholds is the common challenge for any system 
that involves a predefined threshold. The common way is to try and repeat until the 
ideal threshold is found that yields the most TP and TN. We will illustrate this task 
more in the case study and evaluation section. Another possible way is to use auto-
matic statistical methods such as computing the mean ( � ) and standard deviation 
( � ). For example, a score S > 𝜇 + 𝜆𝜎 will be predicted as appear, and vice versa. 
We note that there could be another way that is to use the simple K-means to per-
form clustering since the pairwise distances can be readily derived from the scores. 
In each way, we may eliminate the usage of thresholds, which could be our future 
work.

3.6  System Overview

Figure  3 shows the major components and the overall flow of the link anomaly 
detection system. The system will first process the raw data (netflow, firewall log, 
etc) and extract the connection information, i.e., timestamp, source and destination 
IP addresses (and optionally port numbers). This basic information will allow us 
to know who connects to whom and build the connectivity graph. The prior graph 
and the current graph will be constructed according to the sliding window controller 
(Fig. 1) with a customizable time window size. The process will keep repeating until 
the sliding window moves to the end of the dataset. In order to build connectivity 
graphs, a TCP connection state table is constructed from the flow data to keep track 
of all connection status. For example, even if a pair of source and destination nodes 

Fig. 3  Architecture overview defines components and overall process of link anomaly detection system



613

1 3

Journal of Network and Systems Management (2019) 27:600–624 

do not appear in the netflow record in the current time window, if that pair of nodes 
are still in the “connected” state, the connection should be included as an edge in the 
current graph, until an explicit “tear down” is read from the flow data, which then 
removes such a connection from the state table.

The prior graph will be used to calculate the link scores using a combination 
of the Jaccard’s coefficient, Katz’s index and weighted time frequency functions 
described in earlier sections, and store the results in a link anomaly score table. For 
each pairwise nodes in the current graph, lookups is performed in the score table. 
Based on the score and the actual linkage in the current graph, a decision of whether 
such a link is anomalous or normal is made. Finally, for verification purpose, an IDS 
log is checked to see if the link anomaly prediction matches the record. After finish-
ing the current graph, sliding window controller will be called for computing a new 
time series of graphs, and the procedures will be repeated.

4  Tradeoff Study

For each of network connectivity situations in Fig.  2, there are two predicting 
results: anomalous (positive) or normal (negative). For each prediction, there can 
only be two results, true anomaly or false anomaly. From additional dataset such as 
IDS log, we are able to evaluate the link anomaly detection results for each connec-
tion situation via confusion matrix. For example, a correct prediction of an anomaly 
is a true positive (short as TP); a wrong prediction of an anomaly is a false positive 
(short as FP); a correct prediction of a normal connection is a true negative (short 
as TN); a wrong prediction of a normal connection counts as a false negative (short 
as FN). In other words, TP means we successfully identify the real anomaly connec-
tions which are indeed caused by malicious attacks, and TN refers to the negative 
(normal) tuples that are correctly labeled by the link anomaly detection system. FP 
means a link is identified as anomaly (positive) but it turns out to be normal (nega-
tive). FN means a link is considered as normal (negative) but turns out to be bad 
(positive).

The above four measures are used as the building blocks for our tradeoff com-
parative study. We use widely recognized metrics (see Table 1) for evaluating the 
link anomaly detection algorithm. These metrics include accuracy, error rate, sen-
sitivity, specificity and precision. To begin with, accuracy (Eq.  5), also known as 
recognition rate, is the percentage of connections (normal and abnormal) that are 
correctly identified by our link anomaly detection method. Error rate (Eq. 6), on the 
other hand, measures the overall percentage of incorrect predictions of connections 
(normal and abnormal). Sensitivity (Eq. 7) is also referred to as the true positive rate 
(TPR), while specificity (Eq. 8) is also referred to as the true negative rate (TNR). 
The former is the proportion of anomalies that are correctly detected, and the lat-
ter is the proportion of normal links that are correctly identified. Precision (Eq. 9), 
also known as positive predictive value, is the proportion of detected anomalies that 
turn out to be true anomalies over all detected anomalies. Note it looks at a different 
aspect than the true positive rate (TPR) or sensitivity.
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In this section and Sect. 5, we use VAST Challenge’11 (MC2) dataset for illus-
tration purpose. The dataset consists of a scenario for a large shipping company 
and 3 days of firewall and IDS logs as core information data from the corporate 
network.

We first create the receiver operating characteristic (ROC) curves in Fig.  4 for 
illustration. ROC curves are commonly used to illustrate the performance of a 
binary classifier with varying thresholds. We use ROC curves to plot TPR versus 
FPR at various threshold settings. We apply the thresholds and prediction meth-
ods as the link anomaly detection scheme. In addition, a random scheme is added 

Table 1  Evaluation metrics Metric Equation

Accuracy TP + TN

P + N

(5)

Error rate FP + FN

P + N

(6)

Sensitivity TP

TP + FN

(7)

Specificity TN

TN + FP

(8)

Precision TP

TP + FP

(9)

Fig. 4  TPR–FPR ROC curves for the link anomaly detection algorithm using IP graphs and IP-port 
graphs. The higher and quicker the curve rises, the better is the system
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for comparison (the diagonal line) which is simulated by assigning links with ran-
dom scores from 0 to 1 to form a random link scoring table.

On the x-axis, it is the FPR (i.e., 1—specificity); on the y-axis, it is the TPR (i.e., 
sensitivity). Curves above the diagonal line are usually interpreted as good classi-
fiers. The TPR of the link anomaly algorithm rises faster than its FPR while the 
random solution tends to have the same linear slope. The first half (0–0.5) is usu-
ally the most critical for performance, i.e., the quicker the curve rises, the better 
is the performance. It can be observed from Fig. 4 that both link anomaly IP and 
IP-port graphs have a steep curve at the beginning and IP graphs can achieve 0.8 
TPR while only having less than 0.3 FPR. While both graphs are significantly better 
than the random case, the result suggests that IP graphs perform better than IP-port 
graphs even though IP graphs are simpler. However, this does not necessarily mean 
IP graphs always perform better than IP-port graphs as it may depend on the number 
of different anomalous types and the specific amount of port number information in 
the log data.

In reality, there is always a tradeoff among TP, TN, FP and FN. Parameters may 
be adjusted so that one measure increases while the other decreases, depending on 
how much one values each measure, e.g., is TP more valuable than TN, or is FP more 
costly than FN? While keeping a balance of these measures, we note that detecting 
some real anomaly is better than no detection at all. For example, if there are ten real 
attacks among a million connections, even detecting two of them can sometimes be 
satisfying because those stealth attacks could go by undetected without the proper 
tools. In a busy network with millions of connections each day, suggesting only a 
few suspicious links to the network administrator for further investigation can be 
very helpful, with understanding that a small portion of those suggestions may be 
false, which can be quickly examined and removed by the administrator.

To illustrate how to choose a good threshold of link anomaly scores, Figs.  5 
and  6 compare the performance impact in terms of TP/FP/TN/FN. Specifically, 
Fig.  5 illustrates how various threshold percentages (from left to right) affect the 
total number of FP and TN (top chart) and the total number of TP and FN (bottom 

(a) (b)

Fig. 5  Comparison of various thresholds. 35% may be a choice for a good balance of TP, FP, TN and FN. 
a FP versus TN, b TP versus FN
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chart). If the threshold is extremely low, there will be many TN and few FP, which is 
a good thing, but there will also be higher FN and lower TP, which is not good. On 
the other side, if the threshold is extremely high, there will be many FP and few TN, 
which is not good, but there will also be many TP and few FN, which is good. So the 
choice is to strike for a good balance of the tradeoff to achieve as high TP and TN 
as possible while keeping a reasonable amount of FP and FN, e.g., 35% threshold 
might be a candidate in this example. As an alternative view, Fig. 6 shows the ROC 
curve of TPR/FPR ratio with data points resulting from varying thresholds. Consist-
ent with Fig. 5, 35% seems to be a good point to choose with about 0.85 TPR and 
less than 0.35 FPR.

We measure the accuracy, error rate, sensitivity and specificity of our link anom-
aly detection algorithms in Fig.  7a–d. We perform 300 rounds of link anomaly 
detections with the sliding window starting from the beginning of the dataset and 
moving towards the end. For each time window, a prior graph of all network traffic 
in the previous time window is built for learning and a current graph for all traffic 
in the current time window is built for testing. The IDS log is used for verification 
purpose. For each round of testing, we record the accuracy, error rate and sensitivity 
for the detection system. From Fig. 7a, it is clear that the accuracies, or the percent-
ages of connections that are correctly identified as either normal or abnormal, are 
consistently centered around 0.76. There has been no case where the accuracy is less 
than 0.72. The chart suggests that the proposed link anomaly algorithm is effective 
in accurate identification of the nature of all network connections (normal or abnor-
mal). In contrast, Fig. 7b shows that the error rates, or the percentages of incorrectly 

Fig. 6  An alternative comparison of various thresholds in terms of ROC curve, which is consistent with 
Fig. 5, i.e., 35% threshold may achieve a high TPR while keeping a reasonable FPR
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identified connections (normal or abnormal), of all link anomaly detections are con-
sistently centered around 0.24, with no case having more than 0.25 error rate.

Sensitivities, or the true positive rates (TPRs), show a lot more variation, as 
shown in Fig. 7c. While the distribution has a long head, the majority of the sen-
sitivities of the 300 link anomaly detection cases are between 0.6 and 0.75. Some-
times being able to detect true anomalies, even though just a few, can be valuable. 
For instance, suppose there are 10 truly problematic connections hiding in vast 
number of log files. Without any tool, an administrator may find nothing suspicious. 
With the assistance of the link anomaly detection algorithm, even finding just one 
true problematic link can be critical in fault localization or intrusion detection. The 
results suggest that approximately 70% of those real problematic links can be found 
by the link anomaly detection algorithms. Finally, Fig. 7d shows that the specifici-
ties, or true negative rates (TNRs), are uniformly distributed around 0.75.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7  Comparative study of dynamic link anomaly detection using combinations of metrics. a Accura-
cies, b error rates, c sensitivities, d specificities, e TPR versus FPR, f accuracy versus sensitivity, g accu-
racy versus specificity, h accuracy versus error rate, i sensitivity versus error rate
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We further study the tradeoff of the link anomaly detection algorithms through 
various combinations of the major performance metrics, as shown in Fig. 7e–i. For 
easy comparison, we mark the corners as “best” and “worst,” indicating which side 
is ideal. Each data point in these 2D charts means the result from one of the 300 
rounds of link anomaly detection tasks with sliding windows described earlier.

Figure 7e shows that the majority of link anomaly detections are in the best zone 
with higher TPR than FPR with only a few exceptions. Some TPRs are as high 
as 0.8. In all cases, no FPR is greater than 0.27. In the theoretically perfect case, 
TPR = 1 and FPR = 0, thus the best corner. Figure 7f compares accuracy versus 
sensitivity, or in other words, accuracy in identifying all connections versus accu-
racy in identifying only true abnormal connections. The accuracies for all connec-
tions are consistently above 0.75 while the majority of data points have satisfying 
sensitivity rates ranging from 0.3 to 0.8, mostly are over 0.5. Due to the visualiza-
tion constraint, many dots overlap in the upper-right area.

Figure 7g shows the accuracy versus specificity (TNR). The results suggest the 
algorithms have consistent good performance, with all points near the upper-right 
(0.8, 0.8) best zone. The near perfect results are due to the fact that most normal 
(negative) connections are correctly identified. Figure  7h shows accuracy versus 
error rate. All cases are proved to be having high accuracy and low error rates near 
the (0.75, 0.25) location, close to the best zone. The results clearly indicate the link 
anomaly prediction system performs consistently well in accurately identifying all 
network connections while keeping a low error rate. Finally, Fig. 7i shows results 
in sensitivity versus error rate. No error rates are more than 0.25. The dominating 
majority of testing points suggest much higher sensitivities (TPRs) than the error 
rates, thus in the better zone.

5  Case Study

In this section, we conduct a case study over VAST Challenge’11 (MC2) dataset to 
show how such system may be used to analyze link anomalies as well as to identify 
interesting events in the network log data for situational awareness. Using a typical 
system administrator assisted by the link anomaly detection algorithms in the case 
study, we demonstrate the work flow for log examination and security investigation 
to show how the link anomaly algorithms may help to find out anomalies and reach 
the final conclusion.

Suppose the company’s network and system administrator, Adam, needs to exam-
ine his network traffic flow data for potential bad activities. Since he has no clue 
what specific badness he is looking for, he is unable to search for any specific pat-
tern in the dataset. Therefore, he loads the log files into the link anomaly detection 
system, which extracts from the raw data a few attributes such as timestamps, opera-
tion types, source and destination IP addresses, source and destination ports, etc. 
The system will automatically construct two types of connectivity graphs with either 
IP or IP-port nodes. The two graphs give different insights on the networks with a 
tradeoff of granularity and complexity.
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Adam first defines parameters for the sliding windows to analyze the data since 
graphs are dynamically constructed based on connections during each time period. 
The sliding window size is set as 15 min, which means the prior graph includes all 
connections during the past 15-min window. The time zone size or sliding interval 
is 5 min meaning each time the system will move the window forward for 5-min 
amount of traffic, and the current graph is constructed based on the most recent traf-
fic during the past 5 min. Having a too wide time window risks overfitting the data 
in the prior graph and possibly including data noise, e.g., the attack traffic. The nor-
malized connectivity scores in the ranking table will be close to one suggesting that 
almost all connections in the current graph are normal. Having a too narrow window 
risks not having enough normal traffic to learn, and the scores will be close to zero 
suggesting that most connections are suspicious. Fifteen minutes seem to be a good 
balance to generate appropriate distribution of connectivity scores in the rank tables. 
Figures  8 and  9 show a comparison between the distributions of time frequency 
scores generated with a larger window size and a smaller window size. Figure  8 
shows the time frequency score distribution of an IP-port graph starting at 2011-04-
13 12:07:00 in a 1-min window size in the VAST’11 challenge data. The distribu-
tion is more uniform with extremely low values possibly due to lack of records, thus 
is hard to be used to differentiate connections for link anomaly detection. Figure 9 
increases the graph size by enlarging the time window size to 15 min. It is obvious 
that larger variants make it easier to differentiate connections and are more ideal for 
link anomaly detection.

In order to identify suspicious connections, Adam looks at the distribution of 
scores (Fig. 10) in the connectivity ranking table and puts connections into anoma-
lous set. For instance, Fig. 10 partially shows a snapshot of a ranking table on day 1 
(2011-4-13). The connections on the left side have very low scores meaning they are 

Fig. 8  The time frequency score distribution of an IP-port graph in a 1-min window size. The right box 
area is a magnification of the left box area. Links’ values are mixed at the same extremely low level, 
which is hard to distinguish or predict for link anomalies
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highly unlikely to appear while the connections on the right have very high scores 
meaning they are very likely to appear. Due to the space limitation on the x-axis, 
only a few IP addresses are actually shown. Adam simply draws the top 10% as the 
threshold line and marks connections to the left of the threshold as anomalies, and 
puts them into the anomaly list. The anomaly detection is based on the fact that those 
connections that have the least connection probabilities actually appeared. A group 
of machines with IP addresses ranging from 192.168.2.11 to 192.168.2.138 connect 
to three particular machines with IP 192.168.1.2, 192.168.1.6, and 192.168.1.14, 
which are underlined in red. This is also shown in the list included in Fig. 11. In 
addition, workstations 192.168.2.171-175 are also the sources for many port scans 
to other hosts in the subnet. These link anomalies are confirmed as compromised 
machines starting to conduct port scanning and DDoS attacks in the IDS log.

Turning to the other side of the connection score distribution, Adam examines 
Fig.  12. The connections to the right of the threshold have very high connection 
scores meaning they are very likely to appear. However, from the firewall log, 
Adams finds that these connections are actually torn down, e.g., from 04/13/2011 
12:37 to 04/13/2011 12:52, and therefore disappear from the network graph in 
the following snapshot. This is certainly suspicious. Adam marks these connec-
tions as anomalies and puts them into the anomaly list, as shown in the figure. The 
sources are from 10.200.150.201, 206-9. From the IDS log, Adam confirms that 
there is actually an attempted denial of service (DoS) attack against the corpo-
rate web server 172.20.1.15, e.g., at 04/13/2011 11:43:39, for links which source 
IP is 10.200.150.209. As a result of numerous DoS attacks beginning at 11:39 that 
day, external systems try to disrupt communications with the corporate web server 
172.20.1.5 and finally make it break down for a short time. While these examples 
in the case study are results of malicious attacks, the dynamic link anomaly ana-
lytic system could potentially detect any abnormal connections that are not due to 

Fig. 9  The time frequency distribution of the same graph in Fig. 8 with a 15-min window size. Larger 
variants make it easier to differentiate connections for link anomaly detection
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Fig. 10  The score distribution for all connections appeared in the current graph. The connections to the 
left of the threshold are anomalous since they should not appear but actually appear. It turns out hosts 
such as 192.168.1.14 are attacked by port scans as verified by the IDS records

Fig. 11  Among the src/dst node pairs with least possibilities, the actual appeared connections are high-
lighted to indicate confirmed port scan activities from the IDS
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malicious activities, e.g., due to hardware failures or misconfigurations. Therefore, 
it may also benefit other network management tasks such as troubleshooting and 
diagnosing.

6  Conclusion

In this paper, we study an important yet challenging research problem in dynamic 
network analysis (DNA), i.e., dynamic link anomaly analysis (DLAA). One major 
challenge of dynamic networks is making educated guess of suspicious network 
changes. We introduce the network similarity metrics and sliding time windows 
for data stream mining in order to incorporate the link anomaly detection into the 
dynamic network analysis. To make our algorithms generic, we utilize spatial–tem-
poral information, i.e., the topological similarity measures and weighted time fre-
quency functions. We formally define the complete situations for DLAA and veri-
fication. Through tradeoff analysis and case study, we demonstrate the proposed 
dynamic link anomaly detection framework provides the capability to construct 
effective knowledge structures by measuring the security levels of dynamic net-
works, and filtering anomalous network links. We believe the DLAA algorithm is 
useful in network security management and has potential impact on the analysis of 
many other types of networks as well. Our future work is to conduct a compara-
tive study on how the generic algorithms perform in face of dynamics of various 

Fig. 12  The connections to the right of the threshold are anomalous since they have high connection 
scores but are actually torn down and disappear from the current network graph. It turns out to be an 
attempted DoS attack from machines 10.200.150.201, 206-9 against the corporate web server 172.20.1.5
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networks in addition to enterprise networks, e.g., cloud networks, sensor networks, 
mobile networks, social networks, etc.
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