
Vol:.(1234567890)

Journal of Network and Systems Management (2019) 27:600–624
https://doi.org/10.1007/s10922-018-9478-8

1 3

Dynamic Link Anomaly Analysis for Network Security
Management

Tao Zhang1 · Qi Liao1

Received: 4 August 2016 / Revised: 25 August 2018 / Accepted: 7 November 2018 /
Published online: 13 November 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Network management is challenging due to ever increasing complexity and dynam-
ics of network interactions. While many changes in networks are normal, some
changes are not. One of the daily tasks of network administrators is to identify and
analyze these abnormal changes that are hard to find by traditional security mech-
anisms (IDS, firewall, anti-virus, etc.). This research conducts dynamic network
analysis (DNA) and presents practical methodologies of data stream mining based
dynamic link anomaly analysis (DLAA) using novel sliding time window structures
and network analytics metrics. DLAA employs spatiotemporal link analysis to detect
anomalies from dynamic network graphs. We formally define the network link
anomaly types and use key link-structure similarity metrics and time-weighted func-
tions to model the dynamics of topological changes. The methodology is generic
in that it does not require additional information from nodes or links but only the
topology itself. The DLAA framework consists of three algorithmic components
including sliding time window, link scoring and link anomaly detection algorithms.
Through experimental study on publicly available dataset, we demonstrate that the
proposed DLAA framework has the capability to construct effective knowledge
structures for measuring the security levels of large scale dynamic networks, and to
provide insight for generalized DNA in network security domain.

Keywords Dynamic network analysis · Link anomaly · Network security
management · Graph mining

 * Qi Liao
 liao1q@cmich.edu

 Tao Zhang
 taozhangncut@gmail.com

1 Department of Computer Science, Central Michigan University, Mount Pleasant, MI 48859,
USA

http://orcid.org/0000-0001-5520-157X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-018-9478-8&domain=pdf

601

1 3

Journal of Network and Systems Management (2019) 27:600–624

1 Introduction

Networks are everywhere, from enterprise computer networks to cloud comput-
ing infrastructures, from the Internet of computers to the Internet of Things, and
from social networks to biological networks. The analytic complexity of networks
has been increasingly challenging over the past decades due to the dynamics of
network interactions and ever growing size of networks known as the big data
era. Large-scale networks could suffer from threats from all aspects. For example,
network anomalies such as failure events of IP backbone, denial of service (DoS)
attacks, worm propagation, and network equipment outages, have distinct charac-
teristics but are all potential threats, which may strongly affect the functionality
and dependability of networks in varying degrees.

Dynamic network analysis (DNA) [1] is an emergent scientific field in network
science. There has been an increasing interest in data stream mining based DNA
for network security. The major challenge of this dynamic network analysis is
that it is computationally expensive to separate anomalous changes from normal
changes due to the constant structure changes in massive connectivity in a short
amount of time. These anomalies are important and may be related to faulty hard-
ware/software, misconfiguration, or security related events caused by malicious
users and applications. Anomaly analysis is extremely useful in many domains.
For example, network managers and administrators need to monitor the latest
traffic graphs to increase situation awareness for both effective troubleshooting
and time-efficient security-related investigation. While there has been effort in
anomaly-based intrusion detection [2, 3], the anomaly analysis of dynamic net-
work links has remained challenging.

In this paper, we study a branch of DNA, i.e., dynamic link anomaly analysis
(DLAA) that focuses on detection of connection anomalies based on the graph
topological structures such as information from network flow data. For better
defense against the increasing 0-day attack, we aim to utilize behavior or learn-
ing based approaches, in particular, link prediction algorithms to analyze network
connections. The challenges lie on a few key characteristics of anomaly detection
that are fundamentally different from link prediction tasks [4]. Although link pre-
diction [5, 6] may predict whether a pair of nodes that have not been connected
in the past will ever be connected sometime in the future, its focus does not usu-
ally consider pairs of nodes that have previously been connected. The fundamen-
tal deficiency of traditional link predictions in the security domain is that they
do not consider the dynamics of network connections, e.g., the on/off patterns.
It has been observed that networks are not only becoming much larger but much
more heterogenous, complex and dynamic as well. Taking computer networks for
example, the massive amount of traffic among the computing nodes is constantly
changing, e.g., users and applications may come and go at any time, establishing
and tearing down the connections.

The contribution of this paper is notably the development of DLAA framework
by incorporating link anomaly scoring and link anomaly detection algorithms for
dynamic network graphs. To keep the algorithms generic, our approach does not

602 Journal of Network and Systems Management (2019) 27:600–624

1 3

need background information such as node attributes, but is based on the network
topologies. To solve the spatio-temporal link analysis challenges, we build our
approaches on the dynamic graph structures by including a time dynamic function
and similarity measurement based on the evolving network topologies in consec-
utive time windows. Intuitively, the frequency of links’ appearances implies the
importance of such connections. It is reasonable to assume the connections close
to the time of investigation may receive more emphasis than connections hap-
pened much earlier on due to the temporal locality of packet exchanges and net-
work flows. We further use the topological structures as similarity measurement
such as Jaccard coefficients and Katz measure, and merge them into one coherent
link anomaly methodology.

Different types of anomalies are formally modeled by considering every possi-
ble combination of previously unlinked/linked nodes and currently unlinked/linked
nodes. In each time window, each pairwise nodes are assigned a normalized similar-
ity score according to the aforementioned metrics and functions to measure their
importance. The scores will be used to help determine whether the connections will
be built or torn down in next time phase for a variety of situations. Based on the
actual connectivity in a current snapshot graph, we are able to judge whether each
link is anomalous or normal from the differences between the expected result and
the reality. Through a case study and performance evaluation on publicly available
dataset, we illustrate the effectiveness of the DLAA by comparing the accuracies,
true and false positives and negatives. We believe the study has immediate benefits
for network management in terms of security investigation and troubleshooting, and
the methodologies are also general enough to have potential impact on many other
types of networks.

The remaining of the paper is organized as follows. Section 2 discusses related
work and compares proposed algorithms with exiting approaches. Section 3 defines
the similarity metrics and anomaly types, and describes the key algorithms for
dynamic link anomaly analysis. We then evaluate the effectiveness of the proposed
dynamic link anomaly analytic methods through both extensive performance trade-
off study (Sect. 4) and case study (Sect. 5) using metrics such as ROC curves, accu-
racy and error rates, sensitivity, specificity and precision for various combinations of
true/false positive/negative rates. Finally, Sect. 6 concludes the work.

2 Related Work

In areas of security management, network intrusion and anomaly detection [2, 7]
can be roughly categorized as signature-based and data mining-based. While sig-
nature-based schemes have the advantage of low false positives, signatures require
well defined patterns in advance, making the detection of 0-day exploits impossible
as well as less effective for encrypted activities or self-modifying worms. There has
been progress in using network behavior anomaly detection (NBAD) [8] to detect
anomalies that are not pre-identified or not able to extract a clear pattern. As an
integral part of network behavior analysis, NBAD still needs to establish the knowl-
edge of normal network or user behavior over a certain period of time. Recent trend

603

1 3

Journal of Network and Systems Management (2019) 27:600–624

on deep learning-based network anomaly detection via neural networks has shown
promising results [9]. While machine learning based anomaly detection is promising
since pre-defined signatures are not required, challenges remaining to researchers
are the lack of attack-free clean training data, difficulty of evaluation, and high false
rates [10].

Networked data has been historically represented in network graph format, and
anomaly detection in graphs has gained awareness among researchers. For exam-
ple, anomalies can be manually identified in network flow data by applying the sub-
space method using multivariate time series of byte counts, packet counts and IP-
flow counts [7]. Neighborhood formation has been studied for bipartite graphs [11].
OddBall [12] detects anomaly in graph by assigning an “outlierness” score to each
node. These research studies focus on neighborhood, or sphere, around each node,
or the ego subgraph. Various distributions such as power laws in density, weights,
ranks and eigenvalues of these neighborhood sub-graphs have been proved useful
for anomaly detection. Graph-theoretic approach [13] has also been applied to detect
anomaly in email networks from the publicly available Enron email corpus. In addi-
tion, both link structures and semantics (attributes) have been used to detect outliers
in complex networks [14].

Although there has been significantly amount of work on anomaly detection [3]
looking at various aspects of network anomalies (e.g., traffic volume variations,
packet/flow classifications, DoS/DDoS attacks, etc), we note that the different focus
of this work is on detecting link anomalies in dynamic graphs that exhibit on/off pat-
terns. We complement existing work in the network security management domain
by investigating harder questions, e.g., given only two graphs without any other
knowledge, can we tell possible anomalies (4 types of edge anomalies as illustrated
in Fig. 2)? The proposed algorithm is also generic that is based only on network
topologies and is not restricted to IP networks.

Dynamic network analysis (DNA) [1, 15] aims to understand the complex and
dynamic features of modern networks. DNA has profound implications for many
important tasks. For example, a network manager may need to gain situational
awareness and detect anomalies in information technology network for potential
faults and security breach. DNA with network metrics for centrality and clustering
can be applied to engineering design projects consisting of networks of people and
activities [16].

Dynamic network analysis is highly challenging due to spatial–temporal network
dynamics in terms of both topological structure and attribute evolution. Anomaly
detection approaches in dynamic networks can be either distance/similarity-based
or community-based. Community detection in both static and dynamic networks
is helpful to detect network anomalies [17]. A statistical infinite feature cascade
approach is proposed to detect link anomaly in dynamic social networks [18]. In
addition, the evolution of relationships between entities in DNA can be understood
through dynamic graph visualization [19].

Among the network metrics used, the Jaccard index, which is originally designed
to measure the similarity between sample sets, can be useful to measure nodes’
community similarity. The Katz index [20] is useful in measuring the importance
of nodes (or centrality). Both measures have seen applications in social network

604 Journal of Network and Systems Management (2019) 27:600–624

1 3

analysis. Jaccard based scores, while efficient to compute, may be restricted to local
neighborhood only. Calculating the Katz measure may be slow if designed improp-
erly as the graph size reaches up to a certain extent due to its cubic complexity.
We combine these measures and time factor to compute one overall score for link
anomaly analysis in dynamic networks.

In data mining domains, link mining [21, 22] and particularly link predic-
tion algorithms [4, 23] are introduced as one of the popular graph mining areas.
Researches summarize recent progress in link prediction and show its applications
for a variety of domains such as social networks [5, 6], co-authorship networks [24],
healthcare and bioinformatics [25]. However, most works in link prediction are often
interested in predicting whether a pair of nodes that are not connected previously
will ever be connected in the future. Although the link prediction algorithms will
predict the feature connections in the graph, most of them use a static graph as learn-
ing set without considering the temporal information inherent in the traffic data. In
computer security research, the network is highly time dynamic [26] and traditional
link prediction hardly works well on these datasets with spatiotemporal dynamics.
Instead, we focus on the task of link anomalies [11–13, 27–29] and address more the
dynamic nature of link anomaly with “on/off” behaviors, e.g., whether and when a
previously connected link will become disconnected, and vice versa.

3 Dynamic Link Anomaly Analysis

In this section, we begin by discussing how graphs may be derived from network
traffic log by considering the source and destination IP addresses and port numbers.
We then introduce the graph node similarity metrics and time dynamic functions
for measuring the spatiotemporal dynamics of network. After describing how the
system works and all possible situations for link anomaly predictions, we discuss the
core link anomaly detection algorithms.

3.1 Graph Construction

The system processes the Cisco netflow-like data, which contains important infor-
mation such as source and destination IP addresses, port numbers, start and end
timestamps, protocols, etc. We primarily focus on two types of graphs, i.e., IP
graphs and IP-port graphs. In IP graphs, each node represents one IP address and the
edge represents the network connection between the source and destination IP pair.
The IP-port graphs further consider the application protocols by introducing the port
numbers, e.g., srcIP → srcPort → dstPort → dstIP is one possible way to construct
the IP-port graphs, resulting in heterogenous graphs. Additional parameters such as
ports may be useful in settings such as traffic flow classification [30].

For any moment, we have two types of graphs for anomaly detection: the prior
graph and the current graph. The prior graph is constructed by combining all net-
work connections from netflow data during the past, and will be updated for each
sliding time window. The prior graph is the one that our link anomaly algorithms

605

1 3

Journal of Network and Systems Management (2019) 27:600–624

can use to learn from the past and make educated guess on future connections. Since
we do not have the luxury to do supervised learning, i.e., no one can ever mark
each connection as either good or bad, the unsupervised learning is more suitable
for learning the normal connection behaviors directly from the prior graph. It is
therefore challenging that in real world situation, the prior graph may contain both
clean data and attack data. It might be useful to freeze or adjust the models once
anomaly has been confirmed to eliminate or minimize the data noise from the prior
graph. In contrast to the prior graph, the current graph is built based on the network
traffic in netflow data in the current time window. The current graph represents the
most recent traffic reported by the netflow and is the one upon which our link anom-
aly detection algorithm makes a decision. Both the prior and current graphs will be
rebuilt when the sliding time windows move, as illustrated in Fig. 1.

Real world networks are dynamic, i.e., constantly changing. Some changes are
normal while others are not. To detect abnormal changes, we utilize spatiotempo-
ral metrics to measure the topological changes in time-series snapshot graphs, as
explained in the following sections.

3.2 Similarity Metrics

Let G = (V ,E) be the graph that represents the topological structure of a gen-
eral connected network. Edges in the graph are denoted by e = (u, v) ∈ E , where
u, v ∈ V , and V is the set of nodes or vertices. For each u ∈ V ,Γ(u) represents the set
of u’s distinct adjacent nodes (or neighbors). In addition, the set of paths between u
and v is defined as paths(l)

u,v
 where l represents the exact length of the path. Each edge

e ∈ E counts 1 for unweighted graphs and w(e) for weighted graphs, in which w ∈ W
is referred to as the related edge e’s weight, and W is the set of edges’ weights.

3.2.1 Jaccard’s Coefficient

The Jaccard coefficient is well known to measure the similarity between sample sets,
which is defined as the size of the intersection divided by the size of the union of the
sample sets [31]. Particularly, in the graph G, for each pairwise nodes v, u ∈ V , the
coefficient is defined as the ratio between the number of their common neighbors
and the number of total neighbors, namely:

Fig. 1 The sliding time window will update and rebuild the prior graph and current graph of network
connections

606 Journal of Network and Systems Management (2019) 27:600–624

1 3

In our approach, for instance, it indicates whether two network nodes, e.g., clients,
servers, routers, have a large percentage of overlapping destinations regardless of the
absolute number of connecting targets.

3.2.2 Katz Index

Originally proposed as a path-ensemble based proximity measure by Katz [20], the
Katz measure is a variant of the shortest-path measure [31], which considers that the
more simple paths there are between two nodes and the shorter these paths are, the
stronger is the relationship of two nodes. The measure is defined as:

where 0 < 𝛽 < 1 is a parameter ensuring that the shorter path contributes more to
the score. However, the Katz measure has two main limitations when applied to real
world networks. The first one is its cubic time complexity which makes it hard to
be feasible for a large network. Since the shorter paths dominate the score, we set
a maximum path length for larger graphs, i.e., only the paths shorter than the max
value would count towards the Katz measure. The second limitation of the Katz
measure is that it is inherently not geared towards the needs of some types of link
anomaly detection. For example, the Katz measure for two nodes that are already
connected could be nearly equal because the shortest path for them is only one hop
away, which could dominate the score in most unweighted graphs. For the set of
connected node pairs, utilizing Jaccard’s coefficient may make more sense. Another
challenge lies in heterogeneous graphs, such as those containing both IP addresses
and port numbers, since some of pairwise nodes never have directly connected nodes
as their common neighbors. Moreover, in some cases, only one snapshot graph is
not enough for extracting normal nodes’ connecting behaviors. Therefore, for the set
of connected node pairs, we apply a time frequency function with the third temporal
dimension and a sliding-window learning mechanism.

3.3 Time Frequency

We use a weighted time frequency function [32] to consider the time dynamics of con-
nected nodes for link anomaly detection:

(1)J(u, v) =
|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|

(2)K(u, v) =

∞∑

l=1

� l ⋅
|||paths

(l)
u,v

|||

(3)P
�
Li
�
=

∑N

t=1
w(t) ⋅ d

∑N

t=1
w(t)

, dt,i ∈ (0, 1)

607

1 3

Journal of Network and Systems Management (2019) 27:600–624

The appearance probability functions can be either weighted or unweighted. The
weighted form (Eq. 3) takes a nonlinear time weighting function w(t) (Eq. 4), i.e.,
the appearance of links at later snapshot graphs (or in other words closer to the time
of investigation) should have higher weights over the earlier graphs. Both Eqs. 3
and 4 are normalized between 0 and 1,where P(Li) represents the probability of ith
link; t = 1, 2,… ,N ; N denotes the total number of snapshot graphs; and dt,i takes a
binary form to denote whether ith link appears or not at time t. It is reasonable to
make such assumption due to the inherent temporal locality of network connections.
Schemes such as network caching and Cisco netflow export also assume if a packet
is observed between a source–destination IP/port pair, it is likely that the source will
send packets again to the destination in the near future, thus later appearance of con-
nections is more important (thus having higher weight) than earlier ones.

3.4 Link Anomaly Situations

Theoretically, for each pairwise connection, there could be as many as 16 possi-
ble situations of link anomaly prediction outcomes, as shown in Fig. 2. Each sit-
uation individually depends on its connection status in both the prior and current
graphs as well as the verified results (i.e., whether it is really an anomaly or not).
Figure 2 shows a decision-tree-like structure to illustrate the hierarchy of relation-
ships regarding the 16 situations. There are four probabilities of connecting status
between two vertices in the previous time slice and the current time slice. First, in
the build section, a pair of nodes do not connect in the prior graph but are connected
in the current graph, i.e., they build new connections. Second, in the keep section,
two nodes are already connected in the prior graph and are still connected in the
current graph, or in other words, they keep their existing connections. Third, in the
tear section, a pair of nodes are connected in the prior graph but are disconnected
in the current graph, i.e., they tear down the connections. Lastly, in the never linked

(4)
w(t) = e

−�

(
1−

t

N

)

Fig. 2 The complete 16 situations of dynamic link anomaly analysis and detection

608 Journal of Network and Systems Management (2019) 27:600–624

1 3

section, two nodes are never connected in either the prior or the current graph. For
each of the above connection status, there could be two branches: either predicted
anomalous or not anomalous. For each anomaly prediction, the prediction can turn
out to be either correct or wrong, resulting in true positive (TP), false positive (FP),
true negative (TN) and false negative (FN).

For instance, in a build scenario, a new connection made to a financial server
from a workstation in the sales department, which has not connected to the server
before, can be suspicious. It could indicate that a malicious user or an attacker is
trying to compromise the machine and steal sensitive information. This type of link
anomaly could be useful to detect security-related incidents such as port scans, DoS
attacks, Trojan, worm and various malware infections.

Another example would be in the tear section, a DNS server that is previously
connected by clients is no longer connected with a few machines. This could be
indication of various issues possibly due to hardware faults, link failures, firewall
issues, or simply misconfigurations. This type of link anomaly detection could be
useful for fault localization, debugging and troubleshooting. Since both the mali-
cious activities and equipment failures need at least one connection either in the last
time slice or the current time slice, in this paper we analyze the first three scenarios
while leaving the last never linked case for future study. In Sect. 4, we evaluate and
discuss the various situations of link anomaly detection.

3.5 Link Anomaly Algorithms

In this section, we discuss our link anomaly algorithms via two core modules: the
link anomaly scoring algorithm (Algorithm 1), and the link anomaly detection algo-
rithm (Algorithm 2). The link anomaly scoring algorithm will calculate links’ con-
necting scores based on the node similarity and weighted time frequency functions
discussed earlier for various link anomaly situations, i.e., keep, build and tear. The
link anomaly detection algorithm then generates the anomalous link list based on the
scores using user-defined thresholds.

609

1 3

Journal of Network and Systems Management (2019) 27:600–624

3.5.1 Link Anomaly Scoring Algorithm

According to different link anomaly situations (Sect. 3.4), we use node similarity
functions (Eqs. 1 and 2) and weighted time frequency functions (Eqs. 3 and 4) sepa-
rately to calculate pairwise node connection scores. For those links that have not
been built yet in the past time slice but are connected at present, we use similarity-
based algorithms. For links that have already been built in the past time slice, we
select the time frequency algorithm, which predicts links’ connecting possibility for
the current graph. The algorithm extracts links’ density on the basis of connections’
frequency using build-and-tear patterns.

We first pick both a local similarity index and a global similarity index, i.e., the
Jaccard Index and the unweighted Katz index. For each unlinked pair of nodes u and
v in the prior graph, the Jaccard index value will reflect u and v’s local circumstance
of neighborhoods. Link probability will be higher if u and v have more common
neighbors, which carry more weights. We apply the Katz index to measure u and v’s
linking possibility by considering the topological distance between u and v in the
prior graph. Simply put, the assumption is nodes that are closer and have more paths

610 Journal of Network and Systems Management (2019) 27:600–624

1 3

between them are more likely to connect than nodes that are remote. In particular,
all simple paths between u and v, which could be limited by hops, participate in cal-
culating the Katz index of u and v. Furthermore, all the paths eu,v and their lengths
wu,v are used to predict the likelihood of direct connections between the two nodes.
In order to solve the cubic complexity of the Katz measure and make the calcula-
tion more efficient for large networks, we apply a heuristic method of partial simple
paths by using the maximum length as a limiting factor. Paths which are longer than
the maximum value will not be counted, partly due to the fact that in most cases,
paths of shorter lengths will dominate the measure.

For each linked pair of nodes u and v in the prior graph, weighted time frequency
function is applied based on the temporal locality assumption in which connec-
tions made closer to the time of investigation will be more likely to reconnect than
those connections happened at earlier time. As a result, the later-built links’ scores
will be much higher, suggesting a higher possibility of connection in the current
graph. In addition, the Jaccard index may also be applied to linked nodes to meas-
ure their immediate neighborhood similarity. Intuitively, if two nodes have already
been connected and have many common neighboring nodes, the chance for the two
nodes to stay connected or to be connected again in the future is very high. To com-
bine the scores from the above measures, weighted sums are adopted, as shown in
Algorithm 1.

The computational complexity of the link anomaly scoring algorithm is polyno-
mial time O(n3m) , where n = |V| is the number of nodes in the prior graph, m = |E|
is the number of network connections in the current graph. Since it is less efficient
to compute scores for all pairwise nodes in the prior graph, only nodes that are actu-
ally connected in the current graph are used to compute the scores, thus m times.
Relevant methods such as the Jaccard, Katz, and time frequency scores are applied
for each link. Due to the cubic complexity time of the Katz measure which domi-
nates the time complexity (O(n3)), the overall complexity is O(n3m) . If other faster
algorithms, such as Fast Katz [33] that runs at O(n + m) , are used, the computational
complexity could be further reduced to O(m2 + mn).

611

1 3

Journal of Network and Systems Management (2019) 27:600–624

3.5.2 Link Anomaly Detection Algorithm

Our prediction on whether a link in a network graph is anomalous or normal is
based on the consistency between the link scores from the prior graph and the actual
linkage in the current graph. For example, suppose a link existed in the prior graph
and the link score is considerably high (over a specified threshold). If such a link is
torn town in the current graph, that is in contrary to what is suggested by the scores.
Therefore, we decide such a link disconnection is anomalous. For another example,
suppose there is a connection in the current graph, however, the score of such a link,
which may or may not exist in the prior graph, is quite low. Since the score is in con-
trary to the fact, we would consider the connection as anomalous because the two
network elements are unlikely to be connected according to our prediction. Simi-
larly, if the actual network connection matches our prediction, appear or not appear,
based on the scores, then we consider these links as normal. The logic is summa-
rized in Algorithm 2. For the link anomaly detection algorithm, the computational
complexity is time O(m) where m is the number of network connections.

While implementation specific, the score tables are divided into three segments,
i.e., keep (c–c), build (d–c), and tear (c–d) tables. The keep table stores all connec-
tions that exist in both prior and current graphs. The build table stores connections

612 Journal of Network and Systems Management (2019) 27:600–624

1 3

in the current graph but not in the prior graph. The tear table stores connections that
exist in the prior graph but not in the current graph. The three thresholds ({�k, �b, �t}
are for each table, respectively. Assuming the score tables are sorted by the score
values (top = highest; bottom = lowest), the thresholds in both keep and build
tables are on the bottom part meaning the connections have low scores but actually
appeared. On the other hand, the threshold in the tear table is at the top meaning the
connections have high scores but did not appear. Both are considered anomalies.

Note that the thresholds refer to the percentage of total links that will be predicted
as anomaly. We use percentage thresholds in the score table to predict the appear-
ance of links. Choosing the ideal thresholds is the common challenge for any system
that involves a predefined threshold. The common way is to try and repeat until the
ideal threshold is found that yields the most TP and TN. We will illustrate this task
more in the case study and evaluation section. Another possible way is to use auto-
matic statistical methods such as computing the mean (�) and standard deviation
(�). For example, a score S > 𝜇 + 𝜆𝜎 will be predicted as appear, and vice versa.
We note that there could be another way that is to use the simple K-means to per-
form clustering since the pairwise distances can be readily derived from the scores.
In each way, we may eliminate the usage of thresholds, which could be our future
work.

3.6 System Overview

Figure 3 shows the major components and the overall flow of the link anomaly
detection system. The system will first process the raw data (netflow, firewall log,
etc) and extract the connection information, i.e., timestamp, source and destination
IP addresses (and optionally port numbers). This basic information will allow us
to know who connects to whom and build the connectivity graph. The prior graph
and the current graph will be constructed according to the sliding window controller
(Fig. 1) with a customizable time window size. The process will keep repeating until
the sliding window moves to the end of the dataset. In order to build connectivity
graphs, a TCP connection state table is constructed from the flow data to keep track
of all connection status. For example, even if a pair of source and destination nodes

Fig. 3 Architecture overview defines components and overall process of link anomaly detection system

613

1 3

Journal of Network and Systems Management (2019) 27:600–624

do not appear in the netflow record in the current time window, if that pair of nodes
are still in the “connected” state, the connection should be included as an edge in the
current graph, until an explicit “tear down” is read from the flow data, which then
removes such a connection from the state table.

The prior graph will be used to calculate the link scores using a combination
of the Jaccard’s coefficient, Katz’s index and weighted time frequency functions
described in earlier sections, and store the results in a link anomaly score table. For
each pairwise nodes in the current graph, lookups is performed in the score table.
Based on the score and the actual linkage in the current graph, a decision of whether
such a link is anomalous or normal is made. Finally, for verification purpose, an IDS
log is checked to see if the link anomaly prediction matches the record. After finish-
ing the current graph, sliding window controller will be called for computing a new
time series of graphs, and the procedures will be repeated.

4 Tradeoff Study

For each of network connectivity situations in Fig. 2, there are two predicting
results: anomalous (positive) or normal (negative). For each prediction, there can
only be two results, true anomaly or false anomaly. From additional dataset such as
IDS log, we are able to evaluate the link anomaly detection results for each connec-
tion situation via confusion matrix. For example, a correct prediction of an anomaly
is a true positive (short as TP); a wrong prediction of an anomaly is a false positive
(short as FP); a correct prediction of a normal connection is a true negative (short
as TN); a wrong prediction of a normal connection counts as a false negative (short
as FN). In other words, TP means we successfully identify the real anomaly connec-
tions which are indeed caused by malicious attacks, and TN refers to the negative
(normal) tuples that are correctly labeled by the link anomaly detection system. FP
means a link is identified as anomaly (positive) but it turns out to be normal (nega-
tive). FN means a link is considered as normal (negative) but turns out to be bad
(positive).

The above four measures are used as the building blocks for our tradeoff com-
parative study. We use widely recognized metrics (see Table 1) for evaluating the
link anomaly detection algorithm. These metrics include accuracy, error rate, sen-
sitivity, specificity and precision. To begin with, accuracy (Eq. 5), also known as
recognition rate, is the percentage of connections (normal and abnormal) that are
correctly identified by our link anomaly detection method. Error rate (Eq. 6), on the
other hand, measures the overall percentage of incorrect predictions of connections
(normal and abnormal). Sensitivity (Eq. 7) is also referred to as the true positive rate
(TPR), while specificity (Eq. 8) is also referred to as the true negative rate (TNR).
The former is the proportion of anomalies that are correctly detected, and the lat-
ter is the proportion of normal links that are correctly identified. Precision (Eq. 9),
also known as positive predictive value, is the proportion of detected anomalies that
turn out to be true anomalies over all detected anomalies. Note it looks at a different
aspect than the true positive rate (TPR) or sensitivity.

614 Journal of Network and Systems Management (2019) 27:600–624

1 3

In this section and Sect. 5, we use VAST Challenge’11 (MC2) dataset for illus-
tration purpose. The dataset consists of a scenario for a large shipping company
and 3 days of firewall and IDS logs as core information data from the corporate
network.

We first create the receiver operating characteristic (ROC) curves in Fig. 4 for
illustration. ROC curves are commonly used to illustrate the performance of a
binary classifier with varying thresholds. We use ROC curves to plot TPR versus
FPR at various threshold settings. We apply the thresholds and prediction meth-
ods as the link anomaly detection scheme. In addition, a random scheme is added

Table 1 Evaluation metrics Metric Equation

Accuracy TP + TN

P + N

(5)

Error rate FP + FN

P + N

(6)

Sensitivity TP

TP + FN

(7)

Specificity TN

TN + FP

(8)

Precision TP

TP + FP

(9)

Fig. 4 TPR–FPR ROC curves for the link anomaly detection algorithm using IP graphs and IP-port
graphs. The higher and quicker the curve rises, the better is the system

615

1 3

Journal of Network and Systems Management (2019) 27:600–624

for comparison (the diagonal line) which is simulated by assigning links with ran-
dom scores from 0 to 1 to form a random link scoring table.

On the x-axis, it is the FPR (i.e., 1—specificity); on the y-axis, it is the TPR (i.e.,
sensitivity). Curves above the diagonal line are usually interpreted as good classi-
fiers. The TPR of the link anomaly algorithm rises faster than its FPR while the
random solution tends to have the same linear slope. The first half (0–0.5) is usu-
ally the most critical for performance, i.e., the quicker the curve rises, the better
is the performance. It can be observed from Fig. 4 that both link anomaly IP and
IP-port graphs have a steep curve at the beginning and IP graphs can achieve 0.8
TPR while only having less than 0.3 FPR. While both graphs are significantly better
than the random case, the result suggests that IP graphs perform better than IP-port
graphs even though IP graphs are simpler. However, this does not necessarily mean
IP graphs always perform better than IP-port graphs as it may depend on the number
of different anomalous types and the specific amount of port number information in
the log data.

In reality, there is always a tradeoff among TP, TN, FP and FN. Parameters may
be adjusted so that one measure increases while the other decreases, depending on
how much one values each measure, e.g., is TP more valuable than TN, or is FP more
costly than FN? While keeping a balance of these measures, we note that detecting
some real anomaly is better than no detection at all. For example, if there are ten real
attacks among a million connections, even detecting two of them can sometimes be
satisfying because those stealth attacks could go by undetected without the proper
tools. In a busy network with millions of connections each day, suggesting only a
few suspicious links to the network administrator for further investigation can be
very helpful, with understanding that a small portion of those suggestions may be
false, which can be quickly examined and removed by the administrator.

To illustrate how to choose a good threshold of link anomaly scores, Figs. 5
and 6 compare the performance impact in terms of TP/FP/TN/FN. Specifically,
Fig. 5 illustrates how various threshold percentages (from left to right) affect the
total number of FP and TN (top chart) and the total number of TP and FN (bottom

(a) (b)

Fig. 5 Comparison of various thresholds. 35% may be a choice for a good balance of TP, FP, TN and FN.
a FP versus TN, b TP versus FN

616 Journal of Network and Systems Management (2019) 27:600–624

1 3

chart). If the threshold is extremely low, there will be many TN and few FP, which is
a good thing, but there will also be higher FN and lower TP, which is not good. On
the other side, if the threshold is extremely high, there will be many FP and few TN,
which is not good, but there will also be many TP and few FN, which is good. So the
choice is to strike for a good balance of the tradeoff to achieve as high TP and TN
as possible while keeping a reasonable amount of FP and FN, e.g., 35% threshold
might be a candidate in this example. As an alternative view, Fig. 6 shows the ROC
curve of TPR/FPR ratio with data points resulting from varying thresholds. Consist-
ent with Fig. 5, 35% seems to be a good point to choose with about 0.85 TPR and
less than 0.35 FPR.

We measure the accuracy, error rate, sensitivity and specificity of our link anom-
aly detection algorithms in Fig. 7a–d. We perform 300 rounds of link anomaly
detections with the sliding window starting from the beginning of the dataset and
moving towards the end. For each time window, a prior graph of all network traffic
in the previous time window is built for learning and a current graph for all traffic
in the current time window is built for testing. The IDS log is used for verification
purpose. For each round of testing, we record the accuracy, error rate and sensitivity
for the detection system. From Fig. 7a, it is clear that the accuracies, or the percent-
ages of connections that are correctly identified as either normal or abnormal, are
consistently centered around 0.76. There has been no case where the accuracy is less
than 0.72. The chart suggests that the proposed link anomaly algorithm is effective
in accurate identification of the nature of all network connections (normal or abnor-
mal). In contrast, Fig. 7b shows that the error rates, or the percentages of incorrectly

Fig. 6 An alternative comparison of various thresholds in terms of ROC curve, which is consistent with
Fig. 5, i.e., 35% threshold may achieve a high TPR while keeping a reasonable FPR

617

1 3

Journal of Network and Systems Management (2019) 27:600–624

identified connections (normal or abnormal), of all link anomaly detections are con-
sistently centered around 0.24, with no case having more than 0.25 error rate.

Sensitivities, or the true positive rates (TPRs), show a lot more variation, as
shown in Fig. 7c. While the distribution has a long head, the majority of the sen-
sitivities of the 300 link anomaly detection cases are between 0.6 and 0.75. Some-
times being able to detect true anomalies, even though just a few, can be valuable.
For instance, suppose there are 10 truly problematic connections hiding in vast
number of log files. Without any tool, an administrator may find nothing suspicious.
With the assistance of the link anomaly detection algorithm, even finding just one
true problematic link can be critical in fault localization or intrusion detection. The
results suggest that approximately 70% of those real problematic links can be found
by the link anomaly detection algorithms. Finally, Fig. 7d shows that the specifici-
ties, or true negative rates (TNRs), are uniformly distributed around 0.75.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7 Comparative study of dynamic link anomaly detection using combinations of metrics. a Accura-
cies, b error rates, c sensitivities, d specificities, e TPR versus FPR, f accuracy versus sensitivity, g accu-
racy versus specificity, h accuracy versus error rate, i sensitivity versus error rate

618 Journal of Network and Systems Management (2019) 27:600–624

1 3

We further study the tradeoff of the link anomaly detection algorithms through
various combinations of the major performance metrics, as shown in Fig. 7e–i. For
easy comparison, we mark the corners as “best” and “worst,” indicating which side
is ideal. Each data point in these 2D charts means the result from one of the 300
rounds of link anomaly detection tasks with sliding windows described earlier.

Figure 7e shows that the majority of link anomaly detections are in the best zone
with higher TPR than FPR with only a few exceptions. Some TPRs are as high
as 0.8. In all cases, no FPR is greater than 0.27. In the theoretically perfect case,
TPR = 1 and FPR = 0, thus the best corner. Figure 7f compares accuracy versus
sensitivity, or in other words, accuracy in identifying all connections versus accu-
racy in identifying only true abnormal connections. The accuracies for all connec-
tions are consistently above 0.75 while the majority of data points have satisfying
sensitivity rates ranging from 0.3 to 0.8, mostly are over 0.5. Due to the visualiza-
tion constraint, many dots overlap in the upper-right area.

Figure 7g shows the accuracy versus specificity (TNR). The results suggest the
algorithms have consistent good performance, with all points near the upper-right
(0.8, 0.8) best zone. The near perfect results are due to the fact that most normal
(negative) connections are correctly identified. Figure 7h shows accuracy versus
error rate. All cases are proved to be having high accuracy and low error rates near
the (0.75, 0.25) location, close to the best zone. The results clearly indicate the link
anomaly prediction system performs consistently well in accurately identifying all
network connections while keeping a low error rate. Finally, Fig. 7i shows results
in sensitivity versus error rate. No error rates are more than 0.25. The dominating
majority of testing points suggest much higher sensitivities (TPRs) than the error
rates, thus in the better zone.

5 Case Study

In this section, we conduct a case study over VAST Challenge’11 (MC2) dataset to
show how such system may be used to analyze link anomalies as well as to identify
interesting events in the network log data for situational awareness. Using a typical
system administrator assisted by the link anomaly detection algorithms in the case
study, we demonstrate the work flow for log examination and security investigation
to show how the link anomaly algorithms may help to find out anomalies and reach
the final conclusion.

Suppose the company’s network and system administrator, Adam, needs to exam-
ine his network traffic flow data for potential bad activities. Since he has no clue
what specific badness he is looking for, he is unable to search for any specific pat-
tern in the dataset. Therefore, he loads the log files into the link anomaly detection
system, which extracts from the raw data a few attributes such as timestamps, opera-
tion types, source and destination IP addresses, source and destination ports, etc.
The system will automatically construct two types of connectivity graphs with either
IP or IP-port nodes. The two graphs give different insights on the networks with a
tradeoff of granularity and complexity.

619

1 3

Journal of Network and Systems Management (2019) 27:600–624

Adam first defines parameters for the sliding windows to analyze the data since
graphs are dynamically constructed based on connections during each time period.
The sliding window size is set as 15 min, which means the prior graph includes all
connections during the past 15-min window. The time zone size or sliding interval
is 5 min meaning each time the system will move the window forward for 5-min
amount of traffic, and the current graph is constructed based on the most recent traf-
fic during the past 5 min. Having a too wide time window risks overfitting the data
in the prior graph and possibly including data noise, e.g., the attack traffic. The nor-
malized connectivity scores in the ranking table will be close to one suggesting that
almost all connections in the current graph are normal. Having a too narrow window
risks not having enough normal traffic to learn, and the scores will be close to zero
suggesting that most connections are suspicious. Fifteen minutes seem to be a good
balance to generate appropriate distribution of connectivity scores in the rank tables.
Figures 8 and 9 show a comparison between the distributions of time frequency
scores generated with a larger window size and a smaller window size. Figure 8
shows the time frequency score distribution of an IP-port graph starting at 2011-04-
13 12:07:00 in a 1-min window size in the VAST’11 challenge data. The distribu-
tion is more uniform with extremely low values possibly due to lack of records, thus
is hard to be used to differentiate connections for link anomaly detection. Figure 9
increases the graph size by enlarging the time window size to 15 min. It is obvious
that larger variants make it easier to differentiate connections and are more ideal for
link anomaly detection.

In order to identify suspicious connections, Adam looks at the distribution of
scores (Fig. 10) in the connectivity ranking table and puts connections into anoma-
lous set. For instance, Fig. 10 partially shows a snapshot of a ranking table on day 1
(2011-4-13). The connections on the left side have very low scores meaning they are

Fig. 8 The time frequency score distribution of an IP-port graph in a 1-min window size. The right box
area is a magnification of the left box area. Links’ values are mixed at the same extremely low level,
which is hard to distinguish or predict for link anomalies

620 Journal of Network and Systems Management (2019) 27:600–624

1 3

highly unlikely to appear while the connections on the right have very high scores
meaning they are very likely to appear. Due to the space limitation on the x-axis,
only a few IP addresses are actually shown. Adam simply draws the top 10% as the
threshold line and marks connections to the left of the threshold as anomalies, and
puts them into the anomaly list. The anomaly detection is based on the fact that those
connections that have the least connection probabilities actually appeared. A group
of machines with IP addresses ranging from 192.168.2.11 to 192.168.2.138 connect
to three particular machines with IP 192.168.1.2, 192.168.1.6, and 192.168.1.14,
which are underlined in red. This is also shown in the list included in Fig. 11. In
addition, workstations 192.168.2.171-175 are also the sources for many port scans
to other hosts in the subnet. These link anomalies are confirmed as compromised
machines starting to conduct port scanning and DDoS attacks in the IDS log.

Turning to the other side of the connection score distribution, Adam examines
Fig. 12. The connections to the right of the threshold have very high connection
scores meaning they are very likely to appear. However, from the firewall log,
Adams finds that these connections are actually torn down, e.g., from 04/13/2011
12:37 to 04/13/2011 12:52, and therefore disappear from the network graph in
the following snapshot. This is certainly suspicious. Adam marks these connec-
tions as anomalies and puts them into the anomaly list, as shown in the figure. The
sources are from 10.200.150.201, 206-9. From the IDS log, Adam confirms that
there is actually an attempted denial of service (DoS) attack against the corpo-
rate web server 172.20.1.15, e.g., at 04/13/2011 11:43:39, for links which source
IP is 10.200.150.209. As a result of numerous DoS attacks beginning at 11:39 that
day, external systems try to disrupt communications with the corporate web server
172.20.1.5 and finally make it break down for a short time. While these examples
in the case study are results of malicious attacks, the dynamic link anomaly ana-
lytic system could potentially detect any abnormal connections that are not due to

Fig. 9 The time frequency distribution of the same graph in Fig. 8 with a 15-min window size. Larger
variants make it easier to differentiate connections for link anomaly detection

621

1 3

Journal of Network and Systems Management (2019) 27:600–624

Fig. 10 The score distribution for all connections appeared in the current graph. The connections to the
left of the threshold are anomalous since they should not appear but actually appear. It turns out hosts
such as 192.168.1.14 are attacked by port scans as verified by the IDS records

Fig. 11 Among the src/dst node pairs with least possibilities, the actual appeared connections are high-
lighted to indicate confirmed port scan activities from the IDS

622 Journal of Network and Systems Management (2019) 27:600–624

1 3

malicious activities, e.g., due to hardware failures or misconfigurations. Therefore,
it may also benefit other network management tasks such as troubleshooting and
diagnosing.

6 Conclusion

In this paper, we study an important yet challenging research problem in dynamic
network analysis (DNA), i.e., dynamic link anomaly analysis (DLAA). One major
challenge of dynamic networks is making educated guess of suspicious network
changes. We introduce the network similarity metrics and sliding time windows
for data stream mining in order to incorporate the link anomaly detection into the
dynamic network analysis. To make our algorithms generic, we utilize spatial–tem-
poral information, i.e., the topological similarity measures and weighted time fre-
quency functions. We formally define the complete situations for DLAA and veri-
fication. Through tradeoff analysis and case study, we demonstrate the proposed
dynamic link anomaly detection framework provides the capability to construct
effective knowledge structures by measuring the security levels of dynamic net-
works, and filtering anomalous network links. We believe the DLAA algorithm is
useful in network security management and has potential impact on the analysis of
many other types of networks as well. Our future work is to conduct a compara-
tive study on how the generic algorithms perform in face of dynamics of various

Fig. 12 The connections to the right of the threshold are anomalous since they have high connection
scores but are actually torn down and disappear from the current network graph. It turns out to be an
attempted DoS attack from machines 10.200.150.201, 206-9 against the corporate web server 172.20.1.5

623

1 3

Journal of Network and Systems Management (2019) 27:600–624

networks in addition to enterprise networks, e.g., cloud networks, sensor networks,
mobile networks, social networks, etc.

Acknowledgements This work was supported in part by CMU Early Career Grant (C61920) and ASEE
Fellowship U.S. Air Force SFFP Program. We thank Dr. Keesook J. Han who provided insight and exper-
tise that greatly assisted the research.

References

 1. Carley, K., Pfeffer, J.: Dynamic network analysis (DNA) and ORA. In: Proceedings of the 2nd Inter-
national Conference on Cross-Cultural Decision Making: Focus 2012 , San Francisco, CA, July
21–25 (2012)

 2. García-Teodoro, P., Díaz-Verdejo, J., Maciá-Fernández, G., Vázquez, E.: Anomaly-based network
intrusion detection: techniques, systems and challenges. Comput. Secur. 28(1–2), 18–28 (2009)

 3. Ahmed, M., Mahmood, A.N., Hu, J.: A survey of network anomaly detection techniques. J. Netw.
Comput. Appl. 60, 19–31 (2016)

 4. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A Stat. Mech. Appl. 390(6),
1150–1170 (2011)

 5. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: The 12th
International Conference on Information and Knowledge Management (CIKM), New Orleans, LA,
November 3–8 (2003)

 6. Hasan, M.A., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: SIAM
Workshop on Link Analysis, Counterterrorism and Security with SIAM Data Mining Conference,
Bethesda, MD (2006)

 7. Lakhina, A., Crovella, M., Diot, C.: Characterization of network-wide anomalies in traffic flows. In:
Proceedings of the 4th ACM SIGCOMM Conference on Internet measurement, Ser. IMC’04, pp.
201–206. ACM, New York (2004)

 8. Szmit, M., Szmit, A., Adamus, S., Bugala, S.: Usage of Holt–Winters model and multilayer percep-
tron in network traffic modelling and anomaly detection. Informatica 36(4), 359–368 (2012)

 9. Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J.: A survey of deep learning-based network
anomaly detection. Clust. Comput. 4, 1–13 (2017)

 10. Sommer, R., Paxson, V.: Outside the closed world: on using machine learning for network intrusion
detection. In: IEEE Symposium on Security and Privacy, Oakland, CA, vol. 16, no. 19, pp. 305–316
(2010)

 11. Sun, J., Qu, H., Chakrabarti, D., Faloutsos, C.: Neighborhood formation and anomaly detection
in bipartite graphs. In: IEEE International Conference on Data Mining (ICDM ’05), Houston, TX
(2005)

 12. Akoglu, L., McGlohon, M., Faloutsos, C.: OddBall: spotting anomalies in weighted graphs. In: The
14th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Hyderabad, India (2010)

 13. Huang, Z., Zeng, D.: A link prediction approach to anomalous email detection. In: IEEE Interna-
tional Conference on Systems, Man, and Cybernetics, Taipei, Taiwan, October 8–11 (2006)

 14. Liu, L., Zuo, W.L., Peng, T.: Detecting outlier pairs in complex network based on link structure and
semantic relationship. Expert Syst. Appl. 69, 40–49 (2017)

 15. Carley, K.M.: ORA: a toolkit for dynamic network analysis and visualization. In: Alhajj, R., Rokne,
J. (eds.) Encyclopedia of Social Network Analysis and Mining, pp. 1219–1228. Springer, New York
(2014)

 16. Parraguez, P., Eppinger, S.D., Maier, A.M.: Information flow through stages of complex engineering
design projects: a dynamic network analysis approach. IEEE Trans. Eng. Manag. 62(4), 604–617
(2015)

 17. Javed, M.A., Younis, M.S., Latif, S., Qadir, J., Baig, A.: Community detection in networks: a multi-
disciplinary review. J. Netw. Comput. Appl. 108, 87–111 (2018)

 18. Yasami, Y., Safaei, F.: A statistical infinite feature cascade-based approach to anomaly detection for
dynamic social networks. Comput. Commun. 100(C), 52–64 (2017)

 19. Beck, F., Burch, M., Diehl, S., Weiskopf, D.: A taxonomy and survey of dynamic graph visualiza-
tion. Comput. Graph. Forum 36(1), 133–159 (2017)

624 Journal of Network and Systems Management (2019) 27:600–624

1 3

 20. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)
 21. Getoor, L., Diehl, C.P.: Link mining: a survey. ACM SIGKDD Explor. Newsl. 7(2), 3–12 (2005)
 22. Chakrabarti, D., Faloutsos, C.: Graph mining: laws, generators, and algorithms. ACM Comput.

Surv. 38(2), 1–69 (2006)
 23. Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link prediction.

In: The 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington
DC, pp. 243–252 (2010)

 24. O’Madadhain, J., Hutchins, J., Smyth, P.: Prediction and ranking algorithms for event-based net-
work data. ACM SIGKDD Explor. Newsl. 7(2), 23–30 (2005)

 25. Almansoori, W., Gao, S., Jarada, T.N., Elsheikh, A.M., Murshed, A.N., Jida, J., Alhajj, R., Rokne,
J.: Link prediction and classification in social networks and its application in healthcare and systems
biology. Netw. Model. Anal. Health Inform. Bioinform. 1(1–2), 27–36 (2012)

 26. Potgieter, A., April, K., Cooke, R., Osunmakinde, I.: Temporality in link prediction: understanding
social complexity. Sprouts: working papers on information systems, vol. 7, no. 9 (2007)

 27. Rattigan, M.J., Jensen, D.: The case for anomalous link discovery. ACM SIGKDD Explor. Newsl.
7(2), 41–47 (2005)

 28. Wan, X., Milios, E., Kalyaniwalla, N., Janssen, J.: Link-based anomaly detection in communication
networks. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent
Technology (WI-IAT ’08), pp. 402–405 (2008)

 29. Takahashi, T., Tomioka, R., Yamanishi, K.: Discovering emerging topics in social streams via link-
anomaly detection. IEEE Trans. Knowl. Data Eng. 26(1), 120–130 (2014)

 30. Camacho, J., Padilla, P., García-Teodoro, P., Díaz-Verdejo, J.: A generalizable dynamic flow pairing
method for traffic classification. Comput. Netw. 57(14), 2718–2732 (2013)

 31. Fire, M., Tenenboim, L., Lesser, O., Puzis, R., Rokach, L., Elovici, Y.: Link prediction in social
networks using computationally efficient topological features. In: SocialCom/PASSAT, pp. 73–80.
IEEE (2011)

 32. Liao, Q., Striegel, A.: Intelligent network management using graph differential anomaly visualiza-
tion. In: Network Operations and Management Symposium (NOMS), pp. 1008–1014. IEEE (2012)

 33. Foster, K.C., Muth, S.Q., Potterat, J.J., Rothenberg, R.B.: A faster Katz status score algorithm.
Comput. Math. Organ. Theory 7(4), 275–285 (2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Tao Zhang is a Ph.D. student in the Computer Science Department at College of William and Mary. He
received his M.S. degree in Computer Science from Central Michigan University. His research interests
include computer security, specifically in architectural support for security, anomaly detection, and cyber-
security data analysis and visualization.

Qi Liao is an Associate Professor of Computer Science at Central Michigan University. He received his
M.S. and Ph.D. in Computer Science and Engineering from the University of Notre Dame. He gradu-
ated with a B.S. and departmental distinction in Computer Science from Hartwick College with a minor
concentration in Mathematics. Dr. Liao’s research interests include computer security, machine learning,
visual analytics, and economics/game theory at the intersection of network usage and cybersecurity.

	Dynamic Link Anomaly Analysis for Network Security Management
	Abstract
	1 Introduction
	2 Related Work
	3 Dynamic Link Anomaly Analysis
	3.1 Graph Construction
	3.2 Similarity Metrics
	3.2.1 Jaccard’s Coefficient
	3.2.2 Katz Index

	3.3 Time Frequency
	3.4 Link Anomaly Situations
	3.5 Link Anomaly Algorithms
	3.5.1 Link Anomaly Scoring Algorithm
	3.5.2 Link Anomaly Detection Algorithm

	3.6 System Overview

	4 Tradeoff Study
	5 Case Study
	6 Conclusion
	Acknowledgements
	References

