
SAABCOT: Secure Application-Agnostic
Bandwidth COnservation Techniques

(Invited Paper)
Chad D. Mano

Department of Computer Science
Utah State University

Logan, UT 84322 USA
E-mail: chad.mano@usu.edu

David C. Salyers, Qi Liao, Andrew Blaich, Aaron Striegel
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556 USA

Email:{dsalyers, qliao, ablaich, striegel}@nd.edu

Abstract— High speed modern networks are tasked with mov-
ing large amounts of data to diverse groups of interested parties.
Often under heavy loads, a significant portion of the data exhibits
large amounts of redundancy on short and/or long-term time
scales. As a result, a large body of work has emerged offering
bandwidth conservation exemplified by the work in caching and
multicast. The majority of the techniques that have experienced
widespread adoption rely on parsing / reacting to application-
specific data. With the advent of simplified end-to-end security,
as introduced by IPv6, these techniques will no longer have access
to the plaintext data. We present a novel technique for preserving
security while allowing in-network devices to identify redundant
data flows in order to apply bandwidth conservation techniques.
Our communication protocol does not require modifications to
existing applications nor does it inflict a significant amount of
overhead to the existing network infrastructure.

I. INTRODUCTION

With the rise of multimedia applications, networks are often
faced with the challenge of moving large volumes of data
to diverse groups of interested parties. Despite significant
improvements in network capacity, these volumes of data
must pass through constrained upstream links before reaching
the high speed core of the Internet. Fortunately, multimedia
data often exhibits large degrees of redundancy that can be
exploited to improve transfer efficiency.

While bandwidth conservation techniques such as caching
[1] and multicast [2] have been proposed and adopted with
varying degrees of success, the emergence of end-to-end
security scenarios significantly complicate or even preclude
the use of various approaches. Specifically, the transition from
gateway-oriented VPNs as typically seen with IPv4 to a true
end-to-end security relationship envisioned with IPv6 presents
numerous issues for bandwidth conservation. As many band-
width conservation approaches achieve their benefit by acting
on plaintext data, the usage of end-to-end tunnels negates the
ability of the in-network device to recognize redundant data.

In short, the edge gateway type of environment allows for
a de facto sense of trust, i.e. devices on the LAN or in-line
with network traffic are trusted. In contrast, trust in an IPv6

This research was supported by the National Science Foundation through
the grant CNS03-47392.

environment is solely associated with only the end devices.
Thus, in order to offer a benefit, trust must be extended to the
bandwidth conservation devices themselves (proxies, caches,
etc.) which is non-trivial. Critically, trust extension protocols
often offer new opportunities for attack either by virtue of their
complexity (DoS or DDoS) or by simply offering a new point
to compromise the data flow.

It is this weakness that forms the motivation for this paper:
is it possible to allow bandwidth conservation by in-network
devices without directly extending trust (i.e. view of the
plaintext itself)? To that end, we propose SAABCOT (Secure
Application-Agnostic Bandwidth COnservation Techniques),
an enhancement to IPsec [3]. SAABCOT incorporates an
embedded data-centric key protected by the IPsec session key
to enable bandwidth conservation in legacy applications while
remaining application-agnostic.

The remainder of the paper is organized as follows. Sec-
tion II describes related work and further describes the key
contributions of SAABCOT. Next, Section III describes the
SAABCOT architecture and offers commentary on SAABCOT
applications. Finally, Section IV looks at several case studies
and Section V offers several summary remarks and comments
on our ongoing work.

II. RELATED WORK

While there has been a significant amount of work in
the field of bandwidth conservation, research associated with
secure bandwidth conservation has been primarily focused on
secure group-wise communications [4]. Typically, such works
often rely on an assumed multicast infrastructure or the ability
to insert an application-layer proxy with modifications pro-
vided to the application. Importantly, the issue of deployment,
specifically the notion of a required global infrastructure and
modifications to the application base have been cited as the
primary reasons for multicast deployment falling far short of
expectations [2].

In contrast, the work focused on caching [1], has received
considerable deployment in the Internet. Applications and
pass-through proxies have taken a transparent approach, fa-
voring the immediacy of benefit and deployment, thus dra-

matically accelerating their uptake. Unfortunately, the work
in caching and its derivatives presents security risks to the
end-to-end security of wide area network communication.
Since bandwidth conservation devices remove redundancy by
understanding the protocol (proxy-style) or observing the data
payload (packet caching), an implicit requirement for their
functionality is the ability to process the relevant plaintext
of the packet. Put simply, in order to know what to cache,
the proxy must understand how to request the data and rec-
ognize/respond appropriately. Thus, the application or security
model must be modified to create a new security protocol that
extends trust to the device in question.

To the best of our knowledge, the only work to consider
the impact of security on application-agnostic bandwidth
conservation devices is our own work on Trusted Security
Devices (TSD) [5]. The TSD work examined how to create
an implied group key through extensions of trust in the
Xbox Live environment for enabling stealth multicast [6]
despite IPsec. The work highlighted a critical weakness in
extending trust to additional devices, be those devices proxies
or otherwise “trust-worthy” devices, new complex protocols
must be developed and devices themselves may now be privy
to unencrypted data. The addition of significant complexity
lends itself to new avenues for Denial of Service (DoS) or
other vulnerabilities while extensions of trust of unencrypted
data offers new potential sites to compromise.

This work, SAABCOT, offers several key contributions that
differentiate it from the current state-of-the-art work:

• Lightweight, robust conservation protocols: SAABCOT
offers bandwidth conservation while avoiding the exten-
sion of trust in order to minimize data exposure. The
minimization of data exposure is critical to avoiding
opportunities for adversary Man-In-The-Middle (MITM)
attacks or new avenues for Denial of Service (DoS)
attacks.

• Multiple levels of savings: Previous work has focused on
either exclusively saving short-term or long-term redun-
dancy. This work offers a platform to achieve savings
in both domains to address the rising needs of stream-
ing data but yet still offer substantial benefit to legacy
applications (file transfer, etc.).

• Simplified deployment : The work will seek to minimize
the deployment impact with existing IPsec implementa-
tions to offer simple yet secure installation techniques in
a variety of network scenarios.

III. SAABCOT ARCHITECTURE

In short, SAABCOT provides the ability to offer bandwidth
conservation at multiple levels (local, ISP) without complex
security interactions nor shared distribution of the plaintext
data. This system assumes that bandwidth conservation are
likely to be implemented with passive conservation techniques
but does not mandate the inclusion of in-network devices. The
data sent from each SAABCOT-enabled host is enhanced in
order for the existing bandwidth conservation devices to work
on the secure encrypted communication.

Fig. 1. Example scenario with SAABCOT

Communication begins with an application that transmits
data without any special modifications. A SAABCOT-enabled
IPsec module (coupled with the IPv6 stack) at the OS level
receives the data from the application and encrypts the data
appropriately. In-network devices would then be able to rec-
ognize redundancy but would not see the plaintext of the data.
The actual encryption key for the data would only be available
to the end hosts participating in the transmission. This process
allows bandwidth conservation to occur, significantly reducing
the required bandwidth for transmission of redundant data.
TCP data would be tokenized (cached packets are sent using
only a token [7], [8]) and UDP packets would be stealth
multicast as a single packet [6]. Clients decrypt the data
utilizing encrypted information in the SAABCOT header using
their end-to-end key in a similar manner to IPsec.

There are three key benefits of the system that bear empha-
sis. First, in-network devices see only encrypted data and do
not see the plaintext. Although it is possible to discern that the
same data is being sent to multiple hosts, the content of the
data is kept secret. Furthermore, the ability to even detect that
the same data is being detected would require a compromise of
a device on the communication path, a non-trivial undertaking
that could easily inflict far worse damages (DoS, MITM, etc.).

Second, the applications themselves do not need to be
modified. Similar to IPsec, SAABCOT is a drop-in module
that operates in the OS, thus providing a normal socket-based
interface to the application. Unlike proxy-based solutions or
multicast solutions, SAABCOT will work with legacy ap-
plications without application modifications, thus offering an
immediate and tangible benefit.

Third, SAABCOT need only be enabled at the source
and client. In-network support is not required and simple
backwards-compatible extensions to the initial IPsec hand-
shake would allow for SAABCOT probing. Hence, SAABCOT
will not mandate changes to the existing network, thus further
simplifying deployment.

We now follow up this general description of the SAABCOT
architecture with details of the communication setup and
encryption protocols.

Fig. 2. SAABCOT communication initialization

A. SAABCOT Initialization

For a VPN implementation using the properties of IPsec,
the following information is known:

• Each end host has a public and private key (ex.
KS1−PUB , KS1−PRIV). The public key is known to
all and available via a PKI (Public Key Infrastructure)
system. The private key is known to only the end host
and is used for signing the data.

• Symmetric session keys are used for data exchange
between client and server systems (KSY M−S−Ci

).
• The ability to decrypt a message with the symmetric key

is derived from the end-to-end trust, i.e. the only way
to receive a symmetric key is if the public/private key
relationships are valid. Hence, the internal contents of
the message from the server to client C1 is only readable
by C1.

The goal of SAABCOT operation is to transmit the data
payload such that redundancy can be recognized by the in-
network devices but yet not visible in terms of plaintext.
Importantly, only the end host will have the ability to extract
how to decrypt the text from fields encrypted by the end-to-end
VPN session key in the SAABCOT header.

The initial setup for SAABCOT occurs during the commu-
nication exchange which authenticates users and establishes
the symmetric session key described. The only modification
to this phase is for the purpose of determining if end client
systems can support SAABCOT. If a client does not denote its
support for SAABCOT, normal VPN operations are performed
with bandwidth conservation not being realized. A simple two-
step process is used to establish a SAABCOT communication
session as illustrated in Figure 2.

Step 1: Client initiates key exchange The client (Ci) validates
the public key of S (ex. the data source at the main office)
from the assumed PKI. The client then sends a request to S to
initiate the VPN and appends a SAABCOT probe indicating
that it is capable of a SAABCOT communication session.

I P S A A BC O T I P s e c E n c r y p t e d P a y l o a dP r o t o c o l =S A A B C O T K S Y M � S � C iV P N S e s s i o nK e y K PD a t a � c e n t r i c p a y l o a d k e y ,s t o r e d i n e n c r y p t e d S A A B C O Th e a d e r
R e p l a y p r o t e c t i o n

E n c r y p t i o n
Fig. 3. SAABCOT Data Packet

Step 2: Source receives request, responds to client The source
for the data (S) receives the request and validates the public
key of Ci via the PKI. S responds and denotes whether or
not it supports SAABCOT in the reply. A symmetric session
key for SAABCOT (KSB) is also sent from the source to the
client. The remainder of the key exchange proceeds as normal.

After the key exchange procedure is completed, both the
client and the source are aware that SAABCOT support will
be either enabled or disabled for this connection. Similar
techniques for expanding IPsec would be used in the case of
the standard Diffie-Hellman key exchange versus the above
public/private key exchange. Regardless of whether or not
SAABCOT-enabled bandwidth conservation devices are pre-
sent in the network, information exchange can still occur.
Thus, even if a SAABCOT device is attacked or eliminated,
a Denial of Service will not occur. Rather, a network without
SAABCOT-enabled conservation devices will simply not ex-
perience any bandwidth savings from SAABCOT. Note that
this is a critical difference versus the extension of trust where
IPsec tunnels terminate at a bandwidth conservation device.

B. SAABCOT Communication

Figure 3 shows an example SAABCOT data packet. The
primary change versus IPsec involves two modifications and
one insertion. First, the IP next header field (protocol field in
IPv4) is changed from IPsec to SAABCOT to denote how the
packet should be handled. Second, the SAABCOT header is
inserted as a shim after the IP header and before the IPsec
header. Third, the encrypted data payload is encrypted using
a key specified by SAABCOT (KP) of which the new key is
protected by the IPsec symmetric session key. Informally, the
key relationship can be stated as follows:

ESP = EKP
(P)

where ESP is the newly encrypted payload, KP is utilized
by SAABCOT to encrypt the payload, and P is the original
payload. The encryption key for the payload is included in the
SAABCOT protocol header which in turn is encrypted in the
following manner:

KeyInfo = EKSB−S−Ci
(KP)

V e r L e n O p t i o n s S t a r tL o c a t i o n (S L)P a y l o a d K e y(E n c r y p t e d w i t h S A A B C O T s e s s i o n k e y)
Fig. 4. SAABCOT Packet Header

where KSB−S−Ci is the symmetric session key for SAAB-
COT between the server (S) and the client (Ci) .

The actual payload key (KP) is selected by the server on
transmission. Selection of KP from the list is chosen by
transforming a secure hash of the unencrypted application-
layer payload into a key of the same key length as the IPsec
session key:

KP = f(SHash(P, KH))

where f(x) is the transformation function, SHash computes
the secure hash, KH is the server-side key for the secure hash,
and P is the payload. At a minimum, the keyed input to the
secure hash function should change similar to the IPsec session
key. For redundant data with close temporal proximity, the
key itself can be shifted quite regularly without any impact
on performance as the redundancy windows are quite small.
Hence, one could provide backwards secrecy by computing a
new payload key KP on the detection of unique UDP payloads
(determined by the secure hash). Conversely, frequent rekeying
of data with long term redundancy (ex. TCP) represents a
tradeoff of performance versus key exposure as a change of the
mapping for KP would invalidate downstream cached content.

The SAABCOT header (Figure 4) contains 5 key fields:
• Version / Length: Similar to original IP header specifica-

tion
• Options: Flags to customize SAABCOT operation
• Start Location (SL): The start location of the potentially

redundant data as an offset after the IPsec header. Data
after the start location is assumed to be encrypted with
KP while data before SL is assumed to be encrypted
with KSY M−S−Ci

• Payload Key : The included key KP represents the
mechanism to decrypt the payload at the end client.
The key is encrypted using the end-to-end session key
(KSY M−S−Ci) as outlined earlier.

To decrypt the message, the end client first decrypts the
KeyInfo header using the SAABCOT symmetric key for the
specific security relationship (KSB−S−Ci) and then uses the
resulting key (KP) to decrypt the packet payload. Note that
replay protection is preserved as the original IPsec header is
still present and protected by the original IPsec symmetric
key. Moreover, it is important to note that the relative security
strength to decrypt the actual payload is preserved. While an
adversary can potentially determine that the same information
is being sent to multiple clients (already somewhat easily
inferred even with separate keys by watching the IP size field

and temporal relationships), the adversary does not gain any
sort of advantage in cracking the encrypted text provided that
the key list (kept and generated only server side) is regenerated
aggressively. Moreover, we believe there are numerous cases
where the lack of strict confidentiality (i.e. cases of identical
data may be identified) is not critical to the security of the data
flow (distributed backups, secure file sharing, etc.). In cases
where absolute confidentiality trumps efficiency (ex. credit
card application response), SAABCOT should simply not be
enabled.

C. SAABCOT Key Strength

Consider the strength of SAABCOT examined more for-
mally. Suppose that an adversary Eve (E) wishes to decrypt
the messages going to Alice (A). In the worst case, consider
that the E has already been receiving the data legitimately
from the server and has saved M keys up to this point
(KP1, KP2, . . . , KPM). Furthermore, E is listening to A over
an unsecured wireless channel and is able to observe all traffic
to A.

In the simplest case, both hosts (A and E) request the same
data. In such a case, E can tell that A received the same
data. As E had the data legitimately, the only benefit to E

is knowing that A also has the same data. The observance
of data would be similar to that of various multicast group
keying schemes which is not unreasonable given the savings
offered by SAABCOT. However, we do note that this behavior
is distinct from the per-host keying of IPsec.

With regards to an intelligent attack that consumes less
than the cost of a brute force attack, E can attempt a fast
guess through the gathered M keys hoping for a quick match.
However, provided that collision is unlikely (a reasonable
assumption given the relatively small payloads of packets), E

will be likely forced to examine the key space of KP . As KP

has the same key space as the IPsec session key KSY M−S−A

and SAABCOT session key (KSB−S−A), E cannot expedite
the process aside from the list of known M keys. Furthermore,
E is thwarted from short circuiting the key space search of
the secure hash (birthday attacks, etc.) as E does not know
the input key to the secure hash function. Hence, we argue
provided that rekeying is used appropriately (IPsec session
rekeying interval), M will not grow large enough to create
significant issues.

D. SAABCOT Bandwidth Conservation

From the perspective of the in-network bandwidth conser-
vation device, the device would simply operate on SAABCOT
packets, forwarding all other packets without modfication. As
the in-network device can now see redundancy, bandwidth
conservation techniques can now be applied. The device
caches or multicasts/broadcasts the encrypted content to the
downstream device, saving considerable bandwidth as either
redundant packets are eliminated [6] or tokenized [7], [8].
UDP streaming would be conserved using stealth multicast [6]
while TCP transfers would be conserved using either partial
or whole packet caching [7], [8].

For example, consider the case where the message “RE-
DUNDANT” is sent to each of two end clients. For demon-
stration purposes, we use a Caesar cipher with the following
symmetric keys for C1, C2:

KSY M1 = “B”, KSY M2 = “C”

Without SAABCOT, a bandwidth conservation device
would see payloads of:

|IPsec|“SFEV OEBOU”

|IPsec|“TGFWPFCPV ”

and hence could not offer any savings. In contrast, with
SAABCOT, the device would see messages of:

“(E)|IPsec|[UHGXQGDQW]”

“(F)|IPsec|[UHGXQGDQW]”

where () contains the key index encrypted by the session key,
|IPsec| is the original IPsec header encrypted by the IPsec
session key, and [] contains the encrypted payload. In this
case, a common key KP = 3 = “D” is included in the
SAABCOT header, encrypted by each of the symmetric keys
for the clients.

This enables in-network conservation devices to see iden-
tical payloads without understanding the meaning of the
payload. Hence, bandwidth conservation could occur from the
upstream SAABCOT device to the downstream SAABCOT
device. For example, a single token of D might be used
to represent “UHGXQGDQW” with the SAABCOT header
and the token transmitted over the bottleneck links (messages
become (E)[D] (F)[D]). At the downstream SAABCOT device,
the message is decompressed to send (E)[UHGXQGDQW],
(F)[UHGXQGDQW] onwards to the clients.

When the client receives the packet, it would use its
symmetric key KSY M−S−Ci for the VPN session to decrypt
the message. For example, C1 would decrypt E−B = 4−1 =
3 = D and apply the derived key to the message:

“UHGXQGDQW”− 3 = “REDUNDANT ”

C2 would arrive at the payload key in a similar manner.
Note that despite the fact that the payload is the same, there
are no hints provided as to what the actual payload key
is. In fact, if an adversary could derive KP from the two
messages, the cryptosystem itself would have to possess a
fundamental weakness. Furthermore, conservation could be
probabilistically reduced in favor of secrecy by probabilisti-
cally embedding a random key in the SAABCOT header for
selected hosts.

E. SAABCOT Overhead / Security

In terms of overhead, the overhead of SAABCOT is rela-
tively lightweight. In the worst case where the payload key is
included in the packet and authentication from the source is
desired (digital signature), the overhead is 28 bytes / packet,
slightly more than the IP or TCP headers themselves but less
than IPsec.

While 28 bytes may seem significant in light of the em-
phasis on bandwidth conservation, consider the savings that
SAABCOT would introduce. In the worst case, the 28 byte
header represents an overhead of 1.8% of an Ethernet-style
MTU (1500 bytes). Thus, if only 1.8% of the application
output traffic is redundant, SAABCOT can offer a break-even
savings. Analysis of the University of Notre Dame Internet
Gateway shows levels of redundancy ranging from 3% to
20%. Moreover, Chesire et al. noted in [9] that peak periods
of redundancy tend to occur at peak traffic times, i.e. when
bandwidth conservation is needed most. More recent studies
in [10] have noted an explosion in end-user as true high-speed
connections (fiber to the home) are delivered.

Finally, we revisit the basic security issues with SAABCOT:

• Replay: Replay protection is provided by the IPsec
header. The IPsec header is encrypted as normal with the
IPsec session key (KSY M−S−Ci). Other properties from
IPsec (authentication, etc.) are enabled as well through
the inclusion of the IPsec header.

• Collusion: As the selection of KP is data-centric, mem-
orization or sharing of individual KP keys offers little
benefit. Provided the KP space is vast enough to mini-
mize hash collisions and the server aggressively refactors
keys, collusion (key sharing) is of minimal concern.
Moreover, simple application-layer mechanisms such as
those noted in [8] could be employed to mark data as
non-redundant whereby none of the packet is encrypted
using the in-packet SAABCOT key. The primary tradeoff
with regards to key refactorization comes with caching of
long-term redundant data that would miss out temporarily
on bandwidth savings.

• Redundancy Identification: A separate but valid issue is
the fact that redundancy between different connections
is now visible (i.e. A and B both received the same
packets). Hence as noted earlier, SAABCOT may not be
ideal for all data. Rather, SAABCOT offers a tradeoff of
bandwidth savings / bottleneck reductions versus truly
independent end-to-end security. We believe that the
savings are significant enough to merit application in
many scenarios as the presence of IPsec becomes more
prevalent in the network.

IV. CASE STUDIES

To illustrate the performance benefits of SAABCOT, we
illustrate three example cases, namely videoconferencing with
VPN interconnections, batches of grid computing jobs retriev-
ing data securely, and code check-in via CVS through ssh.

A. Case 1: VPN Videoconferencing

For the first case, consider the case of corporate videocon-
ference involving a main office (MO) and multiple branch
offices (BO1, BO2, BO3). The communication is many-
to-many style with each site both sending and receiving
audio/video information. In addition, several mobile nodes
(MN1, MN2) are listening to the overall communications for
traveling employees to listen in. Each entity is connected by
IPsec forming a VPN between all parties.

For the traditional unicast model, each party involved in
the communication introduces a linearly increasing cost for
outbound communications. Hence, the above example would
replicate individual packets 5 times for each of the receivers.
Although approaches such as Application Layer Mutlciast
(ALM) [11] could reduce the overall bandwidth, the distance
between various receivers (ex. between different BOs) would
likely deliver unsatisfactory QoS performance. Alternatively,
techniques such as Automatic Multicast Tunneling (AMT),
if offered, could improve performance as well provided that
significant multicast deployment existed and that the VPN
gateway acted on behalf of the clients.

In contrast, SAABCOT streamlines the process significantly.
At worst case where no bandwidth conservation devices ex-
ist, SAABCOT offers near unicast performance. If a stealth
multicast device [6] is present, the redundant bandwidth (re-
peat communications) are conserved over the bottleneck links
without modifications to the application. Moreover, aggressive
re-keying could be applied to provide backward secrecy for
clients leaving the virtual session.

B. Case 2: Grid Computing

For the second case, consider a batch of computing jobs
drawing upon the same data to be distributed to a WAN-
scale or campus-wide compute grid. Examples of such en-
vironments include the Open Science Grid (OSG), Globus,
Folding@Home [12], SETI@Home [13], and others [14], [15].
In those cases, the data can be copied in a secure manner
from the source site in either a push (data staging) or pull
(job retrieves data) manner. The mechanisms for I/O include
tools such as GridFTP, scp, and AFS.

Under the traditional unicast model, each job staged will
incur a linearly increasing penalty for distribution. Thus, for
examples such as Folding@Home or SETI@Home where
data is distributed to multiple clients for reliability/verification
purposes, significant bandwidth can be considered redundant.
The use of object-style caching [16] could offer a benefit if
requests for a site are directed through a proxy. However, such
cases are extremely rare with data retrieval often directed by
the submitter of the computation job.

In contrast, consider the usage of SAABCOT. With SAAB-
COT, data across both short timescales and long timescales can
be conserved. If data is pushed in a large batch (pre-staging),
the repetitive data can be consolidated via stealth multicast and
the primary bottleneck link significantly improved. If data is
pulled from the hosts, the usage of packet caching can alleviate

significant repetition of the data. The notion of how to pre-
emptively cache packets of data is an interesting topic for
future research [17].

C. Case 3: Code Check-in

Finally, consider a group of contract programmers checking
in code revisions to a central CVS repository. Similarly,
consider uploading executables or code for compilation to
remote testing machines such as for PlanetLab [18] or Emulab
[19]. While the majority of the code itself is not likely to be
unique, the repository must still be validated to isolate code
changes. Similarly, the code for remote testing often contains
significant repetition when copied across the network.

Similar to the earlier cases, SAABCOT can offer a signif-
icant improvement depending on the volume of updates sent
by the programmer. While most version control attempts to
minimize the total transfer of data, each file change could
be minimized even further in terms of aggregate transfer
cost. The case of remote testing offers the greatest benefit as
aggressive packet caching could create the illusion of LAN-
like performance when copying files despite operating across
the WAN.

V. SUMMARY AND FUTURE DIRECTIONS

In summary, SAABCOT meets an important need for
application-agnostic bandwidth conservation in a simple, ro-
bust, and secure in an IPv6 environment. Through its coupling
with IPsec, SAABCOT offers similarly strong encryption
strength but yet allows multiple levels for bandwidth conser-
vation at both the local and ISP level. Moreover, SAABCOT
is extremely lightweight, incurring little overhead in terms of
the initial negotiation and the per-packet overhead. Thus, we
feel that SAABCOT offers an interesting platform for future
bandwidth conservation in an IPv6 Internet.

Our current work includes modifications to OpenSSH (ssh,
scp) and FreeS/WAN (open source IPsec for Linux) to offer
SAABCOT functionality. Beyond SAABCOT, we note several
research issues that merit further attention:

• Reverse Conservation: In the initial conception of SAAB-
COT and bandwidth conservation, considerable focus is
placed on the forward path or significant producers of
data. An interesting item is to consider how much benefit
could be gained from examining conservation on the re-
verse path. Although various works have examined packet
aggregation [20], there may be opportunities with initial
fetching and data retrieval for bandwidth conservation.

• Sharing Checksum Information: In order to derive KP ,
SAABCOT employs a transformation function from the
secure hash of the payload information. Should this data
be shared with conservation devices in the network to
help expedite identification of redundant data? Similarly,
should data be proactively split [8] to accelerate redun-
dancy computations? Finally, does the block-wise nature
of most strong cryptographic schemes negate the usage
of partial caching schemes [21] that dynamically detect
the boundaries of redundant content?

• DDoS Potential: Does bandwidth conservation offer new
opportunities for DDoS attacks? As the attacker may no
longer be subject to their local bottleneck, bandwidth
conservation offers the opportunity for amplification of
an attack. Should the rate of conservation be limited on
a host-wise or checksum basis?

• TCP and Bandwidth Conservation: If one is being a good
netizen and using IPsec with bandwidth conservation
(identity via IPsec, savings via bandwidth conservation),
do the normal rules of TCP self-clocking apply? For in-
stance, given an effective packet cache, packets will nom-
inally be tokenized from their MTU size to roughly bigger
than the minimum packet size? Should this bandwidth
savings translate into additional bandwidth or reliability
or both?

REFERENCES

[1] J. Wang, “A survey of Web caching schemes for the Internet,” ACM
Computer Communication Review, vol. 25, no. 9, pp. 36–46, 1999.

[2] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen, “Deploy-
ment issues for IP multicast service and architecture,” IEEE Network,
pp. 78–89, Jan./Feb. 2000.

[3] S. Kent and R. Atkinson, “IP Encapsulating Security Payload (ESP),”
IETF RFC 2406, Nov. 1998.

[4] S. Setia, S. Zhu, and S. Jajodia, “A comparative performance analysis
of reliable group rekey transport protocols for secure multicast,” Perfor-
mance Evaluation, vol. 49, pp. 21–41, 2002.

[5] C. Mano and A. Striegel, “Trusted security devices for bandwidth
conservation in IPSec environments,” in Proc. of IFIP Networking,
Waterloo, Canada, May 2005, pp. 166–177.

[6] D. Salyers and A. Striegel, “A novel approach to transparent bandwidth
conservation,” in Proc. of IFIP Networking, Waterloo, Canada, May
2005.

[7] J. Santos and D. Wetherall, “Increasing effective link bandwidth by
suppressing replicated data,” in Proceedings of the USENIX Annual
Technical Conference, New Orleans, Louisiana, June 1998.

[8] X. Li, D. Salyers, and A. Striegel, “Improving packet cache scalability
through the concept of an explicit end of data marker,” in Proc. of IEEE
HotWeb, Boston, MA, Nov. 2006.

[9] M. Chesire, A. Wolman, G. Voelker, and H. Levy, “Measurement and
analysis of a streaming media workload,” in Proc. of the 3rd USENIX
Symposium on Internet Technologies and Systems, Mar. 2001.

[10] K. Cho, K. Fukuda, H. Esaki, and A. Kato, “The impact and implications
of the growth in residential user-to-user traffic,” in Proc. of ACM
SIGCOMM, Pisa, Italy, Sept. 2006, pp. 207–218.

[11] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang, “A case for end system
multicast,” IEEE Journal on Selected Areas in Communication (JSAC),
Special Issue on Networking Support for Multicast, Oct. 2002.

[12] “Folding@home project,” available at folding.stanford.edu.
[13] “SETI@home project,” available at setiathome.ssl.berkeley.edu.
[14] K. K. et. al, “Computational grids in action: The national fusion

collaboratory,” Future Generation Computer Systems, vol. 18, no. 8,
pp. 1005–1015, Oct. 2002.

[15] M. R. et. al, “The astrophysics simulation collaboratory: A science portal
enabling community software development,” Cluster Computing, vol. 5,
pp. 297–304, 2002.

[16] D. Wessels, “The squid internet object cache.” 1997, available at
http://squid.nlanr.net/Squid/.

[17] T. Malik, R. Burns, and A. Chaudhury, “Bypass caching: Making scien-
tific databases good network citizens,” in 21st International Conference
on Data Engineering (ICDE), 2005, pp. 94–105.

[18] A. C. Bavier, N. Feamster, M. Huang, L. L. Peterson, and J. Rexford,
“In vini veritas: realistic and controlled network experimentation,” in
ACM SIGCOMM, Pisa, Italy, 2006, pp. 3–14.

[19] E. Eide, L. Stoller, and J. Lepreau, “An experimentation workbench for
replayable networking research,” in Fourth USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 2007), Cambridge,
MA, Apr. 2007.

[20] B. Badrinath and P. Sudame, “Gathercast: The design and implemen-
tation of a programmable aggregation mechanism for the internet,” in
Proc. of IEEE Int’l Conf. on Computer Communications and Networks
(ICCCN), Oct. 2000.

[21] N. T. Spring and D. Wetherall, “A protocol independent technique
for eliminating redundant network traffic,” in Proc. of the 2000 ACM
SIGCOMM Conference, Stockholm, Sweden, Aug. 2000.

