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Abstract Botnet, a network of compromised computers
controlled by botmasters, can perform various forms of mali-
cious attacks and has emerged as one of the top security
problems yet to be solved. Traditionally, botmasters have
been focusing on herding computers. As mobile comput-
ing devices such as smart phones and tablets are becoming
increasingly popular, there are more targets exposed to hack-
ing risks. While technical approaches have so far received
limited results, we study the botnet problem from an alter-
native angle, i.e., economic perspectives of botnet industry.
In this paper, we play devil’s advocate and think from the
perspective of botmasters, i.e., how botmasters can evolve to
maximize their profits in response to changing technologies.
We adopt the concept of portfolio management, in which
botmasters run their business through maintaining an opti-
mal portfolio of PC and mobile devices to diversify risk and
maximize profits of entire botnet industry. On the other hand,
users may also maximize their utility function by keeping an
optimal portfolio of network activities and data on their com-
puters and mobile devices. The strategic playing by botmas-
ters and users is modeled in a game theoretical framework.
Various equilibrium solutions are discussed in terms of their
welfare implications to botmasters and users. Understanding
the optimal portfolio choice by botmasters provides insight
for defenders, especially with evolving and diversified com-
puting environments.
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1 Introduction

Botnet, a network consisted of compromised computers
known as “bots” or “zombies,” has become an increasing
security concern [1–4]. Computers could be hacked and con-
trolled by botmasters through malicious software (malware),
ranging from carelessly running binaries from email attach-
ments, to installing application software from untrusted
sources, or to simply viewing a flash on a website. A wide
spectrum of malicious activities can be carried out by bot-
nets, e.g., sending out spam and automated ad clicks, stealing
passwords and financial account information, and/or launch-
ing large-scale distributed denial-of-service attacks (DDoS)
[5]. In the past decade, botnets have evolved into sophisti-
cated distributed systems comprising millions of computers
with decentralized control [6]. Zombie computers nowadays
are ranked the single largest threat facing network services
availability and operational security [2].

While computers remain the dominant platform for bot-
nets, the increasing popularity of wireless and mobile com-
puting devices makes them more attractive targets for bot-
masters. Cellular phones, especially smart phones, are not
just devices to make phone calls, but share many func-
tions as computers with their own operating systems (e.g.,
Apple’s iOS, Google’s Android, Symbian, BlackBerry, Win-
dows 8/mobile series and Linux) and wireless Internet con-
nections (e.g., 3G, 4G/LTE, WiMAX, Wi-Fi and Bluetooth).
The highly capable mobile devices, most notably iPads and
Android-based tablets, are rivaling PCs as the dominant Inter-
net platform. Even eReaders such as Amazon Kindle and
Barnes and Noble Nook may potentially run additional appli-

123



2 Q. Liao, Z. Li

cations. The increasing user activities on mobile devices
raises inevitable security concerns about the vulnerabilities
of mobile devices [7–19].

The research on botnets has been largely focusing on tech-
nical analysis such as honeypots/honeynets [2,20,21], mal-
ware and vulnerability analysis [6,9–12],attack simulations
[13–15], or command & control channels (C&C) [17–19,22].
Nevertheless, technical defenses miss the root cause of the
botnet challenge, i.e., financial incentives. As more and more
botnet-based attacks are driven by money [5,23–30], eco-
nomic principles provide promising alternatives to deal with
the botnet issue. Nevertheless, facing the threat of emerging
mobile botnets, little is known about the effects mobile bot-
nets may have on the overall health of the botnet economy.
For example, how do money-seeking attackers choose which
targets PC or mobile devices? How may PC and mobile users
be affected by the changing behaviors of botmasters? Many
other interesting questions can also be asked regarding the
possible coexistence of PC and mobile botnets.

In this paper, we study how money-driven botmasters
would choose to herd between PC and mobile botnets. We
play devil’s advocate and think from the perspective of bot-
masters, i.e., how botmasters can evolve to the emerging tech-
nologies in order to maximize their profits as an industry.
In particular, we propose an interesting concept of portfo-
lio management for botnet business, in which botmasters run
their business through maintaining an optimal portfolio of the
traditional computer botnets1 and the emerging mobile bot-
nets to reap the highest possible payoffs. Modeled in a game
theoretical framework, users on the other hand also maxi-
mize their utility function by keeping an optimal portfolio of
network activities and data on computers and mobile devices.
Three cases of equilibria [31] are derived and discussed; in
each case, botmasters’ optimal portfolio includes PC botnets
only, mobile botnets only, and a mix of PC and mobile bot-
nets, respectively. In particular, the equilibrium in which only
PC botnets are present is proved optimal from the perspec-
tive of users. To achieve such equilibrium, security of mobile
devices should be assigned higher priority relative to PCs
by defenders when facing the trade-off between user conve-
nience and security. Through modeling the strategic playing
by botmasters and users with game theoretical analysis and
optimal portfolio analysis, our work helps security defenders
prioritize their tasks to fight botnets more effectively.

The rest of the paper is organized as follows. Section 2
presents the base model (PC botnets only) and an extended
model (PC and mobile botnets), and defines the optimization
problem for both profit-maximizing botmasters and utility-
maximizing users. We derive and discuss the significance of
three equilibria in Sect. 3 and prove one of the equilibrium

1 Throughout the paper, the terms “computer botnets” and “PC botnets”
are used interchangeably.

is optimal for users while botmasters are likely better off
in other cases. Section 4 further illustrates the implications
of the model via numerical simulation study, which visually
examines how the decision variables and strategies affect the
economic welfare of botmasters and users in terms of whether
they are better off or worse off. In Sect. 5, we provide back-
ground information of botnets and discuss related work. We
also survey and compare current research on the economic,
optimizing and game theoretical approaches on botnet secu-
rity. We conclude our paper in Sect. 6 with suggestion for
future research.

2 Botnet portfolio

In this section, we formulate the optimization problem for
both botmasters and users, i.e., how botmasters construct
their botnet portfolio to reap the highest possible profit,
and how users maximize their utility function by control-
ling activities on computers and mobile devices. A base
model where only PC botnets exist is first developed. The
base model is then extended to study the optimal decision-
making by botmasters at the presence of both PC and mobile
botnets.

2.1 Base model

As a starting point, we first lay out the base model in the
absence of mobile botnets, i.e., only PC botnets are available.
The optimal decision-making by botmasters can be modeled
as the optimization problem for a typical botmaster to maxi-
mize his expected profit in Eq. (1):

max
βp

E[π ] = βp

{
Pp(A) · (Rp − Co

p) − Ca
p

}
(1)

where E[π ] is the expected profit of the botmaster. A few
key variables in the model are defined in Table 1.

2.1.1 Botnet revenue

Without loss of generality, the revenue model of botmasters
(R) includes botmasters’ revenue from stealing data (Rd) and
attacking others (Re), i.e., R = Rd + Re. Confidential infor-
mation stored on users’ computers and mobile devices can
be valuable to cybercriminals [25,26]. Compromising a com-
puter or mobile device allows botmasters to steal data from
the machine, including financial data such as bank accounts
and credit card numbers, and other data such as social security
numbers (SSN), email addresses, passwords, bank accounts
and financial information, and other sensitive information.
The revenue from data is denoted by Rd. Throughout the
paper, subscripts p and m denote PCs and mobile devices,
respectively, e.g., Rd

p means the per-bot data revenue from
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Table 1 Summary of key variables in the botnet profit optimization
model

Rd Botmasters’ revenue from harvesting data on bots
(bank accounts, passwords, etc)

Re Botmasters’ revenue from machine deployment
(DDoS, Spam, etc)

Ca The acquisition cost of compromising machines

Co The operation cost of maintaining botnets

A User activity level (e.g., the number of applications
installed, the frequency of financial transactions,
the amount of data exchanged and stored on
computers and mobile devices)

P The probability of compromising a computer or a
mobile device into the botnet

β The botnet portfolio composition parameter
measured by the likelihood for the botmaster to
hack a particular machine

α The percentage of user activity conducted by a
computer or a mobile device

p, m Subscripts denoting PC botnets or mobile botnets

compromising a PC and Rd
m means the per-bot data revenue

from compromising a mobile device. Data will continue to
be the primary motivation behind cybercrimes—whether tar-
geting traditional fixed computing or emerging mobile appli-
cations [32].

Nevertheless, stealing data is not the only use of bots.
The bots can also be used to attack others and continue to
generate revenue for botmasters [33]. For example, bots can
be rented to launch a large-scale distributed denial-of-service
(DDoS) attack. Traditional DoS attacks are magnitude based.
A few attacker machines make a large number of SYN pack-
ets (flooding) in order to exhaust bandwidth resources. Such
attacks are usually easy to detect and be filtered. In botnet-
based attacks, all connection requests are legitimate that com-
plete TCP handshakes and download objects, and are very
hard to mitigate. Such attacks target server resources (much
like flash crowd), i.e., network services get too overwhelmed
in dealing with attackers’ traffic to serve legitimate users.
DDoS attacks can be launched by unfair business competi-
tors, political dissidents, or for various blackmail/extortion
purposes.

Besides DDoS, another important use of botnets is to
send unsolicited commercial emails (spam) and phishing
messages. More than 90 % of all emails circulating on the
Internet are spam, and 80 % of spam is sent via zombie net-
works [25]. Botnets can provide an implementation of fast
flux technology that allows cybercriminals to change web-
site IP addresses without affecting the domain name, which
extends the lifetime of phishing sites. Even a tiny percent-
age of responses from unsuspicious users to the vast number
of spam/phishing messages will generate significant revenue
for botmasters.

Last but not least, botnets can also be used to do fraudulent
ad clicks. Online advertising agencies often use the pay-per-
click (PPC) scheme to pay for unique clicks on advertise-
ments. Such clicks are fraudulent when clicks on an ad have
no genuine interest or intention of providing the advertiser
any value. Profit-driven advertisement sub-syndicators for
tier-one search engines may hire botmasters to automate ad
clicks to increase their commission revenues. Botnets can
also be used to inflate a web resource by creating links to
the site being promoted to improve the website’s position
in search results, so that it gets more visitors via search
engines. Botmasters get paid by owners of the website being
promoted. All the above botnet revenue from deployment is
denoted by Re.

2.1.2 Botnet costs

We assume botmasters have limited resources. If botmas-
ters had unlimited resources, there would be no upper bound
of the botnet size botmasters could operate. Like any other
business, in order to generate revenue, there must be costs
(although very small) associated with botnets. The cost func-
tion of botmasters includes the acquisition cost (Ca) and
the operation cost (Co). The acquisition cost is botmasters’
opportunity cost of time and money spent on writing codes
or purchasing malicious software (malware) to compromise
machines. The operation cost of maintaining botnets includes
using either centralized (IRC) or decentralized (P2P) com-
mand and control (C&C) channels to control and update bots.

2.1.3 Profit-driven botmasters

We assume botmasters are profit-driven since financial
motivations lie behind most cybercrimes and security-
related Internet threats [5,23–30]. Botmasters allocate lim-
ited resources (C&C channels, energy, money, etc.) to man-
age PC botnets and mobile botnets to reap the maximum
possible profit. In the base case where mobile devices are
absent, profit-driven botmasters will herd PC botnets if and
only if the expected profit is non-negative. That is, the opti-
mal choice of the hacking probability for botmasters is

βp =
{

1, if Pp(A) · (Rp − Co
p) ≥ Ca

p,

0, if Pp(A) · (Rp − Co
p) < Ca

p .

It has been widely recognized that the costs of herding
and operating botnets tend to be much smaller compared to
the potential gains of operating botnets and are likely to be
ignored by botmasters. Moreover, the cost associated with
herding botnets is implicitly taken into account by varying
the compromise probability P . For instance, better protected
machines are less likely to be compromised successfully
(equivalent to a decrease in the compromise probability), and
thus making it more costly for botmasters to herd botnets of
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any given size. Due to the general belief that the costs of bot-
nets tend to be trivial, in the rest of the analysis, we drop the
cost component from botmasters’ profit function, thus maxi-
mizing the expected profit and maximizing the expected rev-
enue are equivalent to botmasters. In particular, as Co → 0
and Ca → 0, βp → 1. It is therefore reasonable to con-
clude that all botmasters herd PC botnets in the base case,
i.e., βp = 1.

As above, in the absence of mobile devices, the decision-
making by botmasters is essentially independent of how
extensively and intensively users conduct network activities
on computers. Since the costs of herding and maintaining
botnets are small, the revenue-generating capabilities of PCs
dominate, hence botmasters would all herd PC botnets.

2.1.4 Users

Without loss of generality, we assume users’ goal is to maxi-
mize their utility (an economic term that measures happiness
or satisfaction) from their usage of computing devices. The
utility function of users is the difference between the welfare
of using computer applications and the potential loss from
compromised machines.

In the base model where users use only computers for
network activities, users choose the overall level of activities
to maximize their expected utility of using computers, i.e.,
maxA E[U (A)] = W · f (A)−βp·Pp(A)·Rd

p , where E[U (A)]
is the expected utility. W · f (A) is the welfare received from
network activities and W is a positive constant. The function
f (A) is increasing and concave ( f ′ > 0, f ′′ < 0), reflecting
a positive but diminishing marginal utility for users. Users’
potential loss from hacked machines depends on the proba-
bility botmasters determine to attack a particular machine, the
likelihood the machine is successfully compromised and the
direct loss suffered by the user (e.g., data) from the compro-
mised machine. Since machine deployment (e.g., ad clicks)
usually does not cause direct monetary loss to users, bot-
masters’ revenue from machine deployment is not included
in users’ utility function. Therefore, the game between bot-
masters and users is not zero-sum meaning the botmasters’
revenue and the users’ loss are not equal. Since botmasters
herd computers for certain in the base case (βp = 1), the
objective utility function of users becomes

max
A

E[U (A)] = W · f (A) − Pp(A) · Rd
p(A). (2)

2.1.5 Activity and vulnerability

The likelihood for a machine to be compromised is positively
related to the user activity level. Intuitively, if a machine
has zero application service running, not connected to the
Internet, with no sensitive data stored, such a machine is of
least interest to hackers. On the other hand, the chance of

installing malware to a machine increases if the machine is
more often connected to the Internet, or is used more fre-
quently to download games from untrusted sources. User
activity refers to factors such as the number of applications
installed, the number of financial transactions conducted and
the amount of data stored or exchanged. It is reasonable to
assume the data revenue of botmasters is positively related to
the network activities carried out by users on their machines.
As in the user utility function (2), the user utility is increasing
in the level of user network activities. Botmasters’ expected
revenue from stealing user information is also increasing in
the level of user network activities. Users face the trade-off
between convenience/usability and security.

Given the security level of machines, we define the proba-
bility function P(A) ∈ [0, 1] as the likelihood for botmasters
to successfully compromise a machine that is increasing and
concave in user activity (i.e., P ′ > 0, P ′′ < 0), showing
the diminishing marginal increase in the likelihood of com-
promise as network applications increase. P(∞) = 1 corre-
sponds to zero security level while P(0) = 0 corresponds to
a hypothetical perfectly secure system.

2.2 Extended model

Things become complicated when mobile botnets enter the
market in addition to PC botnets. What are the effects of
the coexistence of PC and mobile botnets on botmasters’
decision-making? Are botmasters and users better off or
worse off as a result? What is the overall impact on the botnet
economy?

To study these issues, we introduce a portfolio man-
agement scheme that catches the trade-off between finan-
cial gains and uncertainties faced by botmasters. Under the
scheme, botmasters choose the distribution of their limited
resources across computers and mobile devices to construct
a portfolio composed of PC and mobile botnets in order to
maximize the expected profits. To make the scenario even
more interesting, we put the botnet portfolio management in
the setting of a game theoretical framework to capture the
interdependence of the choices made by botmasters and by
users. Money-driven botmasters choose the best responses
depending on the network activity diversification strategies
chosen by users.

2.2.1 The optimization problem for botmasters

Equation (3) defines the maximization problem for bot-
masters to choose the optimal botnet portfolio composition
including PC and mobile botnets.

max
βp,βm

E[R] = βp · Pp(αp A) · Rp

+βm · Pm(αm A) · Rm

s.t. βp + βm = 1, (3)
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where E[R] is the expected revenue generated by the botnet
portfolio of botmasters.

Also in this optimization problem, the maximization of the
expected revenue is equivalent to the maximization of the
expected profit when both cost components of botmasters’
profit function approach to zero.

In contrast to the base model, the decision variables of
botmasters are the probabilities to attack computers (βp) and
mobile devices (βm). Since computers and mobile devices
run different operating systems on different architecture,
codes written for computers are normally not readily applica-
ble to mobile devices, and vice versa. It is therefore reason-
able to assume that botmasters view PC botnets and mobile
botnets as imperfect substitutes, and have to determine the
best resource allocation between PC and mobile botnets.

Also different from the base model, in the coexistence
model, botmasters’ optimal decision-making depends on
users’ distribution of network activities between comput-
ers and mobile devices. Generally, the attractiveness of a
machine to botmasters (in terms of vulnerability to attacks
and financial rewards once compromised) increases as more
network activities are completed by the machine. The per-
centages of users’ network activities completed by comput-
ers and mobile devices are defined as αp and αm, respectively,
where αp + αm = 1. Accordingly, Pp(αp A) and Pm(αm A)

represent the probability for botmasters to successfully com-
promise a computer or a mobile device, respectively. Pp and
Pm differ for various reasons. First, PC and mobile devices
have dramatically different architectures and operating sys-
tems, intensified by multiple vendors. Second, the online
behavior of users tends to be different when using computers
or mobile devices. For example, home PCs follow diurnal pat-
terns and are usually shut down at night. Smart phones may
be on 24/7 thus increasing the exposure to attacks. Third,
the human–computer interaction (HCI) design for mobile
devices is usually restricted, making users much more likely
to choose easy passwords or save passwords on devices.

The strategy variables β and α define the interplay by bot-
masters and users, which affects botmasters’ revenue. The
distribution of user activities between computers and mobile
devices is essential because it directly affects users’ risks of
using various machines. For example, users may send emails
and do e-commerce or e-banking exclusively on computers or
mobile devices. They may also divide up those online activ-
ities in any matter between computers and mobile devices.
How much information is leaked depends on the different
uses of the machines and the applications used for those
purposes. Assume users’ potential loss from data stealing
is evenly distributed across applications, Rd

p = αp Rd and

Rd
m = αm Rd would be botmasters’ gains from compro-

mising computers and mobile devices, respectively. Once
βp and βm are chosen, the expected weights of PC and

mobile botnets in botmasters’ botnet portfolio are deter-
mined accordingly, i.e., {βp · Pp(αp A) · Rp}/E[R] for PC
and {βm · Pm(αm A) · Rm}/E[R] for mobile botnet, respec-
tively.

2.2.2 The optimization problem for users

At the presence of both PC and mobile devices, users’
expected utility is derived from using both types of machines:

max
A,αp,αm

E[U ] = E[Up(αp, A)] + E[Um(αm, A)]
s.t. αp + αm = 1 (4)

Assuming separable additivity, users’ total expected utility
E[U ] is the sum of two separate expected utilities, E[Up] and
E[Um], where E[Up(αp, A)] = Wp · f (αp A)−βp · Pp(αp A)·
αp · Rd is users’ expected utility of using computers, and
E[Um(αm, A)] = Wm · f (αm A) − βm · Pm(αm A) · αm · Rd

is users’ expected utility of using mobile devices.

3 Equilibrium analysis

This section solves the optimization problems modeled in
the previous section and considers the steady state equilib-
ria of the game between botmasters and users. The discus-
sion centers around the key decision variable β∗ which is the
botmasters’ optimal portfolio composition factor of herding
PC and mobile botnets. Three possible combinations of the
botmasters’ portfolio exist: Case-I (PC botnets only), Case-
II (mobile botnets only) and Case-III (mixture of PC and
mobile botnets), as discussed in the following sections.

3.1 The Case-I equilibrium

The scenario in the Case-I equilibrium is that botmasters
do not herd mobile botnets and stay with PC botnets. The
optimal choice for botmasters is

β∗
p =

{
1, if Pp(αp A) · Rp ≥ Pm(αm A) · Rm,

0, else.
(5)

The Case-I equilibrium is the equilibrium solution of the
game if Pp(αp A) · Rp ≥ Pm(αm A) · Rm for all botmas-
ters, making herding PC botnets always more profitable than
herding mobile botnets for any botmaster.

In the Case-I equilibrium, money-driven botmasters are
not as interested in herding mobile botnets as with PC botnets.
Hence, when users use both computers and mobile devices
for online activities, the expected payoff of botmasters is

E[R] = Pp(αp A)(αp Rd + Re
p) (6)

which is smaller than Pp(A)(Rd
p + Re

p), botmasters’ payoff
in the bench model where users use only PCs for online
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activities. Therefore, in the Case-I equilibrium, botmasters’
expected payoff decreases when compared with the base
model in which only PC botnets exist. Users are instead bet-
ter off compared with the base model as mobile devices allow
users to diversify network activities and hence risks.

3.1.1 Proof of optimality

The significance of equilibrium in game theory is that any
party who unilaterally deviates from the equilibrium strategy
is only worse off. Nevertheless, the equilibrium solution is
not necessarily optimal. In this section, we prove that the
Case-I equilibrium is the optimal equilibrium solution for
users of all the three possible solutions since users are harmed
less when botmasters choose to herd only PC botnets.

As botmasters stay with PC botnets, i.e., βp = 1 and βm =
0, the users’ optimal level of network activities (denoted as
A∗) solves the following optimization problem for any given
αp and αm:

max
A

E[U ] = Wp · f (αp A) + Wm · f (αm A)

−Pp(αp A) · αp Rd. (7)

While in the base model, the users’ optimal level of net-
work activities (denoted as Ã) satisfies the following first-
order condition by solving Eq. (2):

W · f ′( Ã) = P ′
p( Ã) · Rd

p , (8)

where the left-hand side and the right-hand side are the
marginal benefit and the marginal cost of user network
activities, respectively. For example, if f (A) = √

A and
Pp(A) = 1− 1√

1+A
,2 from Eq. (8), the users’ optimal choice

of network activities satisfies

(1 + Ã)3

Ã
= (Rd

p)2

W 2 . (9)

Next, let us move to the scenario when botmasters herd
both PC and mobile botnets. Let Pp(αp A) · Rp = Pm(αm A) ·
Rm. Since αp + αm = 1, Rp = αp Rd + Re

p and Rm =
αm Rd + Re

m, the optimal distribution of user network activ-
ities between computers (α∗

p) and mobile devices (α∗
m =

1−α∗
p ) can be found by solving the following equation given

A:

Pp(α
∗
p A) · (α∗

p Rd + Re
p)

= Pm((1 − α∗
p)A) · ((1 − α∗

p)Rd + Re
m). (10)

2 The commonly used square root utility function satisfies both increas-
ing and concave properties of utility. The specified probability function
is increasing in user activity level and generates probability values rang-
ing between 0 and 1. The theoretical proof of optimality does not depend
on the specified functional forms.

To sum, the optimal user strategy (defined by {A∗, α∗
p , α∗

m}
that solve the users’ utility maximization problem) can be
derived from Eqs. (7) and (10) simultaneously.

At f (A) = √
A and P(A) = 1 − 1√

1+A
, A∗ can be found

by solving the below first-order condition of Eq. (7).

Wpα
∗
p(α∗

p A∗)−1/2 + Wmα∗
m(α∗

m A∗)−1/2

= α∗
p Rd(1 + α∗

p A∗)−3/2. (11)

Note at α∗
p = 1, the first-order condition is the same as in the

base model.
Suppose users have the same preference over computers

and mobile devices so that Wp = Wm = W . By taking the
ratio of (8) and (11), we can derive the relative size of the
optimal network applications as

A∗

Ã
= (1 + α∗

p A∗)3

(α∗
p)2(1 + Ã)3

. (12)

By comparing (7) with (2), we show that users are bet-
ter off in the Case-I equilibrium than in the base model as
follows.

Let Wp = Wm = W , the expected utility of users in the
Case-I equilibrium is

E[U ]=W
{

f (α∗
p A)+ f (α∗

m A)
}
−α∗

p Rd · Pp(α
∗
p A). (13)

Since the utility function f (·) is concave, f (α∗
p A) +

f (α∗
m A) > f (A) where α∗

p + α∗
m = 1. In addition, α∗

p Rd <

Rd and Pp(α
∗
p A) < P(A). That is, by diversifying network

activities across computers and mobile devices, users are bet-
ter off by having both increased activity level and reduced
direct loss from information leakage, thus receiving larger
expected utility compared to the base model.

3.2 The Case-II equilibrium

In the Case-II equilibrium, botmasters spend all their
resources on mobile botnets. The optimal choice for bot-
masters is

β∗
m =

{
1, if Pm(αm A) · Rm ≥ Pp(αp A) · Rp,

0, else.
(14)

The Case-II equilibrium is the solution of the game when
Pm(αm A) · Rm ≥ Pp(αp A) · Rp is true for all botmasters,
making the expected payoff of mobile botnets dominate that
of PC botnets.

In the Case-II equilibrium, botmasters’ expected payoff is
E[R] = Pm(αm A)Rm. Compared to botmasters’ expected
payoff in the base model (Pp(A)(Rd

p + Re
p)), whether bot-

masters are better off or worse off depends.
In the Case-II equilibrium, users’ expected utility is

E[U ]=Wp f (α∗
p A)+Wm f (α∗

m A)−Pm(α∗
m A)α∗

m Rd. (15)
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At βm = 1 and Wp = Wm = W , users’ optimal strategy
satisfies both

W { f ′(α∗
p A)αp + f ′(α∗

m A)αm} = Pm(α∗
m A)(α∗

m)2 Rd, (16)

and Eq. (10).
As in the Case-I equilibrium, f (α∗

p A)+ f (α∗
m A) > f (A).

However, in the Case-II equilibrium it is uncertain whether
Pm(α∗

m A)α∗
m Rd is greater than Pp(A)Rd. Although the Case-

II equilibrium is ambiguous for both botmasters and users in
terms of expected benefits, money-driven botmasters tend to
be better off compared with the base case since they would
only switch to mobile botnets if doing so is more profitable.
Considering the reality that PC botnets are already wide-
spread, they would still function though may be at a gradu-
ally descending rate as botmasters switch from PC to mobile
botnets.

3.3 The Case-III equilibrium

The scenario in the Case-III equilibrium is that some bot-
masters focus on PC botnets while others on mobile botnets.
Although each individual botmaster’s choice is dichotomous
(devoting all the limited resources to target one particular
type of botnet only, either PC or mobile botnets), the over-
all botnet portfolio for all botmasters as a botnet industry is
mixed and diversified.

Per Eq. (3), botmasters’ optimal portfolio composition
depends on the probability of compromise and the expected
payoffs from herding PC and mobile botnets, i.e., βp =
βp(Pp, Pm, Rp, Rm) and βm = βm(Pp, Pm, Rp, Rm), which
further depends on user activities and their distribution across
PC and mobile devices.

The Case-III equilibrium is realized in two circumstances.
First, PC botnets and mobile botnets are equally profitable to
botmasters. Second, PC botnets are more profitable to some
botmasters while mobile botnets are more profitable to oth-
ers. For illustration purpose, we use the first scenario to ana-
lyze the welfare effects of such equilibrium.

In the Case-III equilibrium, users’ expected payoff is

E[U ] = Wp · f (α∗
p A) + Wm · f (α∗

m A) − α∗
p Rd ·

Pp(α
∗
p A) − α∗

m Rd · Pm(α∗
m A). (17)

The optimal network activities (A∗) and their distribu-
tion over computers (α∗

p) and mobile devices (α∗
m) still solve

Eqs. (10) and (11). At optimum botmasters are indifferent
between PC or mobile botnets.

3.3.1 Discussion of equilibria

Table 2 provides a simplified ranking summary of the three
scenarios of the equilibrium. Higher ranking means higher
welfare for the corresponding party. For example, in the Case-

Table 2 A simplified ranking summary of equilibria

Botmasters Users

Case-I 3rd 1st

Case-II 2nd 2nd

Case-III 1st 3rd

I equilibrium, users are better off and botmaster are worse off
compared to the base case, which is a win–lose situation. The
Case-II equilibrium is largely a win–win situation in which
both users and botmasters tend to be better off than the worst
case but users are worse off and botmasters are better off com-
pared to the Case-I equilibrium. The Case-III equilibrium is
a lose–win situation which is the most favorable for botmas-
ters (and least favorable for users) when botmasters’ optimal
botnet portfolio consists of both PC and mobile botnets.

The Case-III equilibrium shows that when botmasters
hack both PC and mobile devices, users are worse off as
there is no safe haven for users to diversify risks. By contrast,
botmasters benefit the most from this equilibrium and have
the incentives to reach such equilibrium, perhaps through
increasing their skills of hacking mobile devices, or explor-
ing more revenue sources from mobile devices. From the
defenders’ point of view, they certainly want to avoid this
equilibrium. Given that PC botnets are already widespread,
the Case-III equilibrium would be imminent if defenders do
not act much and quick. This equilibrium is more likely to
occur when users conduct more activities on mobile devices,
when mobiles are easier to hack and control, or when the
economies of scale from operating botnets could be achieved
with the large number of mobile devices.

As proved in Sect. 3.1.1, the Case-I equilibrium is optimal
for users because it is a win–lose situation in which users are
better off while botmasters are worse off. The significance
of the Case-I equilibrium suggests that the key is to pre-
vent botmasters from herding mobile botnets, which would
only be the case when mobile botnets are not as profitable
as PC botnets. From the economic perspective, reducing the
expected profit of mobile botnets would require either reduc-
ing the revenue generated by botnets or increasing the cost
of managing botnets.

In order to make this equilibrium possible, security
defenders may think in the following two directions. First,
to reduce botmasters’ revenue from mobile botnets, users
should follow the Case-I equilibrium for the optimal distrib-
ution of network activities/data on PCs and mobile devices.
We should design some clever synchronization program that
allows the application/data on the mobile devices not to
exceed a threshold. By diversifying network activities across
PC and mobile devices, users could have less financial loss
by not putting all their eggs in one basket.
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Second, to increase the cost of managing mobile botnets
(equivalent to decreasing the compromise success rate Pm

in the model), it is crucial to develop an industry standard
to request mobile OS/application developers, vendors and
cellular service providers to give higher priority to the secu-
rity of mobile devices, thus making mobile devices relatively
more robust to attacks. Although all system designs face the
trade-off between usability and security, we argue the secu-
rity concern for mobile devices should have higher priority
relative to PCs.

In some sense, diversified architecture, multiple vendors,
strict application examination and release policy may be good
in terms of overall security of mobile devices. Besides Apple
Store, many companies have launched their own application
stores since 2008 including Android Market (now Google
Play Store), Amazon Android Appstore, BlackBerry App
World, Nokia Ovi Store, Palm App Catalog and Microsoft
Windows Marketplace for Mobile. Markets, crowdsourcing
and automatic detection infrastructure should work together
to prevent potential vulnerabilities in applications from open-
ing up the door for malware.

4 Numerical simulation study and discussion

In this section, we further study a few key issues discussed
in previous sections via graphical illustration. In particu-
lar, we demonstrate how botmasters make decisions regard-
ing whether to herd PC or mobile botnets, how botmasters’
expected payoffs are affected at the presence of both PC and
mobile devices, and how user welfare is affected by the coex-
istence of PC and mobile devices. Throughout the numerical
simulation study, the utility function f (A) and the probabil-
ity function P(A) still take the format as specified in Sect. 3
while the parameter values are assigned for illustration pur-
poses only. The numerical examples simplify the complex
relationship among important decision variables and provide
insights and guidelines for botmasters, users and security
defenders.

4.1 User expected utility

First, we show how users can increase their expected util-
ity (Fig. 1) while enjoying more network activities (Fig. 2)
on computers and mobile devices in the Case-I equilibrium.
Throughout the case study, we specify Wp = Wm = 20
and Rd = 55. In the base model where users use computers
only, users’ expected payoff is E[Ũ ] = 24.8 (at A = 10
and αp = 100 %) by Eq. (2). When users use both comput-
ers and mobile devices, their expected utility E[U∗] in the
Case-I equilibrium is E[U∗] = 20(

√
10αp+

√
10(1 − αp))−

55αp(1 − 1√
1+10αp

) by Eq. (13).

Fig. 1 In the optimal Case-I equilibrium where botmasters stay with
PC botnets, user expected utility exceeds that of the base model through
risk diversification by distributing network activities between computers
and mobile devices

Fig. 2 In the Case-I equilibrium, users are further better off in terms
of the increase in total network activities compared to the base model

Figure 1 illustrates how user’s expected utility (E[U∗])
in the Case-I equilibrium changes with the distribution of
network activities to computers (αp). As shown, E[U∗] is
decreasing in αp. A smaller αp means more intensive use
of mobile devices for network activities. If a smaller αp is
sufficient to make PC botnets more financially attractive to
botmasters (possibly when the security of mobile devices is
supreme for instance), having mobile devices in use will pro-
vide buffer room for users, benefiting users with risk diver-
sification opportunities. The straight line in Fig. 1 is the user
utility in the base model. It can be seen that users are better
off as they gain in their expected utility through diversifying
network activities on computers and mobile devices.

Equation (12) is the relative size of network activities in
the Case-I equilibrium (A∗) and the base model ( Ã). Figure 2
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Fig. 3 The distribution of user activities to computers based on the
security of mobile devices to achieve the Case-I equilibrium

plots A∗ and Ã at αp = 0.5. As shown, users gain in network
activities (A∗ > Ã) when using both computers and mobile
devices.

4.2 User activity portfolio

Next we show in Figs. 3 and 4, how the distribution of net-
work activities to computers (αp), the profitability of mobile
botnets from machine deployment (Re

m) and the probability
of successful compromise of mobile botnets(Pm) are inter-
dependent to achieve the Case-I equilibrium. In particular,
Eq. (10) has to be satisfied to effectively prevent botmasters
from herding mobile botnets. Let Re

p = Re
m = 100. Along

with previously specified parameter values and functional

forms, we get (1− 1√
1+10αp

)(55αp+100) = Pm(55(1−αp)+
100). As shown in Fig. 3, αp and Pm are positively related:
Users should allocate more network activities to computers
when mobile devices are less secure to keep botmasters from
switching to mobile botnets. From the perspective of users,
a smaller Pm (more secure mobile devices) is preferred in
which case mobile devices could allow more risk diversifi-
cation opportunities for users.

Besides the security of mobile devices, user utility
depends also on the relative profitability of PC and mobile
botnets. Figure 4 adds the profitability of mobile botnets
from machine deployment (Re

m) to Fig. 3 as the third
dimension. Let Re

m be unspecified while all the other para-
meters stay at previously defined values. Equation (10)
becomes (1 − 1√

1+10αp
)(55αp + 100) = Pm(55(1 −

αp) + Re
m). As shown in Fig. 4, as the profitability of

mobile botnets from machine deployment increases, the
percentage of network activities allocated to computers
should also increase proportionally to reach the Case-I
equilibrium.

4.3 Botmasters’ strategy and profitability

Figure 5 plots the expected payoff functions of PC and mobile
botnets for botmasters based on user activities and their dis-
tribution between computers and mobile devices. The control
variable for botmasters is β where botmasters herd PC and/or
mobile botnets depending on their relative profitability. As
shown in Fig. 5, if the surface of the expected payoff of PC
botnets is on top of that of mobile botnets, the optimal strategy
for botmasters is to choose βp = 1 and βm = 0, and βp = 0

Fig. 4 The profitability of
mobile botnets from machine
deployment, the probability of
successful compromise of
mobile devices and the
distribution of user activities
between PC and mobile devices
are interdependent to achieve
the Case-I equilibrium
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Fig. 5 Botmasters’
decision-making based on the
relative profitability of PC and
mobile botnets (i.e., always
choose the higher surface)

Fig. 6 In the Case-I equilibrium, users’ risk diversification and port-
folio management of network activities across computers and mobile
devices reduce the profitability of botmasters significantly compared to
the base model

and βm = 1 vice versa. Botmasters are indifferent between
herding PC or mobile botnets at the intersection of the two
surfaces since the expected payoffs are equal. Although an
individual botmaster’s choice is dichotomous, the overall bot-
net business as an industry is mixed and diversified (a botnet
portfolio).

Figure 6 shows that botmasters are worse off in the Case-I
equilibrium compared to the base model. In particular, two
curves are drawn representing botmasters’ expected payoffs
in the base model (E[R̃] = 105) and in the Case-I equilib-

rium (E[R∗
1 ] = (1 − 1√

1+10αp
)(55αp + 100)). As can be

seen, users’ risk diversification across computers and mobile
devices can effectively reduce the expected payoffs of bot-
masters.

As above, the Case-I equilibrium is optimal in which users
are better off and botmasters are worse off compared to the
base model. The optimum would only be achieved if botmas-
ters could be successfully kept from herding mobile botnets,
which would be the case if mobile botnets are not as profitable
as PC botnets for money-seeking botmasters.

In contrast to the Case-I equilibrium, when botmasters tar-
get both PC and mobile devices, they can be better off com-
pared to the base model. In other words, the expected payoffs
for botmasters in the Cases-II and Case-III equilibria may be
higher than the base model, as shown in Fig. 7a where bot-
masters herd mobile botnets, and in Fig. 7b where botmasters
herd both PC and mobile botnets. However, botmasters are
not always better off since there exist combinations of A and
α that can make botmasters’ expected payoffs fall below the
base model.

5 Related work

We categorize the botnet-related research into two general
groups, the technical approach and the economic approach.
We first discuss the technical approach in terms of malware
analysis and detection, DDoS attacks, command and control
(C&C) channels, etc., focusing on mobile botnet defense.
We then discuss the economic approach to analyzing botnet
problems along with game theoretical modeling.
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(b)(a)

Fig. 7 With the coexistence of PC and mobile botnets, botmasters are most likely better off compared to the base model. a Expected payoff of
botmasters in the Case-II equilibrium. b Expected payoff of botmasters in the Case-III equilibrium

5.1 Computer and mobile botnets

In response to the increasing use of botnets for attacks,
sophisticated techniques have been suggested in order to
measure, understand and develop possible defenses against
botnets [2,6,22,34–36]. Recent trends note that the bot-
net problem is not abating but rather increasing despite an
increasing array of technical options [37].

Traditionally, botnets are comprised of fixed computers
and servers. During the past decade, we observe the fast-
growing popularity and highest penetration rate of smart
phones, tablets and other mobile computing devices among
users. The rapid expansion of highly capable but largely inse-
cure mobile devices raises concerns that mobile devices could
be the next target of hackers and become what we refer to as
mobile botnets.

Traynor et al. [11,13] demonstrated the disruptive abil-
ity of a mobile botnet composed of as few as 11,750 com-
promised mobile phones to degrade service to area-code
sized regions by 93 %. They also analyzed mobile oper-
ating system (OS) vulnerability and jamming attacks and
effects on network service. It is possible to create a mobile
phone botnet on the most popular smart phone (iPhone) [14].
Vulnerabilities in most mobile phones can be exploited for
carrying out large-scale DoS attacks using SMS messages
[15].

Security of mobile devices has been the subject of a num-
ber of recent studies. A survey [7] studied mobile security
and various attack vectors from different layers: hardware,
system and users, and targeting at different types of mobile
devices, OS, wireless links and malware. Study in [16] com-
pared mobile security versus fixed computer security. Mobile
devices face a wide range of new security challenges and

malicious threats due to different computing environments
such as resource constraints, attack types, architecture, plat-
forms and HCI usability. Contemporary mobile platform
(Android and iOS) threats and security model are studied
in [8].

Malicious software (malware) specifically designed for
mobile devices has been developed or analyzed. For exam-
ple, Felt et al. [10] surveyed existing mobile malware of iOS,
Android and Symbian and discussed current and future incen-
tives for writing mobile malware. The incentives include sell-
ing user credential, premium-rate calls and SMS, SMS spam,
search engine optimization, ransom, ad click fraud, invasive
advertising, in-application billing fraud, government surveil-
lance, email spam, DDoS and proximity-based credit card
transaction using near field communication (NFC). Schlegel
et al. [12] developed Soundcomber, a low-profile (minimum
traffic volume) sensory malware that extracts audio sensor
data of the phone thus can potentially steal credit card num-
bers and PINs. To detect mobile malware, current practice
relies on mobile application markets, which requires manual
intervention. Nadji et al. [9] proposed an Airmid system for
automated detection and response to malware infections on
mobile devices based on their network behavior.

Command and control (C&C) channel is another impor-
tant component of botnets, used by botmasters to control
and maintain bots, and to send instructions to bots. Research
[17] revealed that Bluetooth is feasible for C&C channels
for mobile phone-based botnets due to repetitive nature of
human daily routines. Simulation shows C&C messages can
be propagated to two-thirds of infected nodes within 24 h. In
addition, SMS messages as C&C channel, P2P structure as
topology [18], or steganography combined with web URLs
[19] can also be used to make mobile botnets feasible.
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5.2 Economics of botnets

Defending against botnets is highly challenging. While the
above studies are important, botnets have bypassed techni-
cal defenses, resulting in a never ending arms race between
attackers and defenders, which is usually an undesirable posi-
tion for defenders. Thus, it is necessary to rethink the botnet
problem.

We argue that the botnet problem is essentially an eco-
nomic problem. Botnets have the potential to provide bot-
masters with a large variety of income sources [5,23–28].
Currently, botnets are commonly used in distributed denial-
of-service attacks (DDoS), key-logging, ad click fraud,
SMTP mail relays for spam, identity/financial accounts theft,
etc., all of which have the ability to generate large amount
of revenue for botmasters. As more cybercriminals become
driven by money, removing the financial incentives driving
them is likely to help solve the growing botnet problem from
the root cause.

As researchers become more aware of the economic nature
of Internet security problems, recent research has been seek-
ing help from economic studies. To stem the flow of stolen
credit cards and identity thefts, two technical approaches
were proposed in [38] to reduce the number of successful
market transactions, aiming at undercutting the cybercrim-
inals’ verification or reputation system. In a similar vein,
Ford and Gordon proposed targeting malicious-code gener-
ated revenue streams from online advertising fraud [23].

Botnet malicious activities have become more organized
and money-driven, and a digital underground economy for
hacking-related goods and services has evolved. Vömel et
al. [28] studied the infrastructure and modes of operation of
this underground economy by examining the traffic captured
on IRC channels via data collection from honeypots. There
could exist a two-tier underground economy of IRC market
[26], the upper tier where gangs and alliances can extract
value from their resources, avoid taxes and gain higher profit,
and the lower tier consisting of those who must buy resources
or who cannot monetize the data they steal. The features
of the underground economy, including the flow of goods,
services, and resources, social costs and profits, roles and
incentives of private and public protection, are also studied in
[30].

The economics of botnet spam is surveyed in [29], which
estimated an extremely high “externality ratio” of the spam
market: the society loses $100 for every $1 of profit to a spam-
mer. The social cost is approximately $20 billion per year in
the USA alone, compared to the annual revenue of $200 mil-
lion earned by botmasters from spamming US consumers.
The economic incentives behind DDoS attacks against fem-
tocell network services are modeled in [39]. Garg et al. [40]
compared organized digital crime (ODC) such as botnets to a
classical economic model of smuggling. They claimed there

are situations where ODC leads to an increase in social wel-
fare.

Finally, game theory [41] provides a formal mathematical
framework to study the interactions between interdependent
rational players. The results of the game are characterized
as one or more Nash equilibria [31]. Although game the-
ory is applied primarily to economics, it has been used in
many other disciplines, including recent research on secu-
rity of communication networks. In particular, game theory
can have applications in six categories of security and pri-
vacy problems [42]: security of the physical and MAC layers,
security of self-organizing networks, intrusion detection sys-
tems, anonymity and privacy, economics of network security
and cryptography.

The interactions between botmasters and defenders can
be analyzed as an SIS epidemic model [43,44] with external
entrances based on optimal control theory. In particular, two
equilibria were derived in [43], i.e., (a) defender: max level,
botmaster: intermediate level; and (b) defender: intermediate
level, botmaster: max level. Results in [44] showed it is opti-
mal for botmasters to reduce infection rate when the percent-
age of infected host is over some threshold as the opportunity
cost of getting caught or traced surpasses the size benefits of
the operation cost. In addition, cooperative and competitive
games have been modeled between two types of botnets with
different outcomes of infection rates and survival ability [45].

Despite the above research on the underground economy
and game theory applications, little has been done to under-
stand the strategies in face of the imminent threat of emerg-
ing mobile botnets in addition to existing computer botnets.
We think from botmasters’ point of view regarding how bot-
masters should run their business in face of the opportunity
of mobile botnets. We propose a novel idea of botnet port-
folio management of herding both PC and mobile botnets
versus user activity portfolio of using computers and mobile
devices. We model the strategic playing by botmasters and
users in a game theoretical framework. The equilibria derived
provide useful insights for security defenders to understand,
analyze and ultimately remove financial incentives of botnet
problems.

6 Conclusion and future work

Botnets are important problems of today’s Internet. Tradi-
tionally, the botnet industry includes only computer bot-
nets. With the rising popularity of mobile devices such as
smart phones and tablets, mobile botnets are emerging. In
this paper, we study the security implications of the possi-
ble coexistence of PC and mobile botnets from an economic
point of view based on the observation that the majority of
botnet-based cybercrimes are driven by money, and there-
fore, by understanding the economics of the botnet business,
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we may fight the botnet problem from the root cause, i.e., the
financial incentives.

We adopt an interesting portfolio concept in managing
botnet as an industry and model the decision-making by bot-
masters and users as optimization problems, in which profit-
driven botmasters seek to maximize their expected profits
from herding a portfolio of PC and mobile botnets while users
seek to maximize their expected utility from using a portfolio
of computers and mobile devices. The strategic playing by
botmasters and users naturally fit in a game theoretical frame-
work, from which three equilibria are derived and discussed.
From defenders’ point of view, the Case-I equilibrium is opti-
mal for users because users are better off while botmasters
are worse off, a win–lose situation. While security is impor-
tant for both computers and mobile devices, security should
have higher priority for mobile devices in order to achieve
the optimal equilibrium.

Understanding the equilibria of botmasters, on the other
hand, may as well provide valuable insight for security prac-
titioners to prioritize their time and effort to fight against
botnets more effectively. With the fast evolving computing
environments and network technologies, more “things,” such
as smart phones, sensors, healthcare devices, or even appli-
ances, will become the first-class citizens of future Internet.
Analyzing the relationship of these emerging botnets will be
interesting future work.
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