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1. SUMMARY

Network security is becoming increasingly challenging because of complexity and dynamics
of network interactions. Dynamic network analysis (DNA) is an emergent scientific field in
network science. There has been an increased interest in data stream mining based DNA for
network security. The major challenge of this dynamic network analysis is that it is compu-
tationally expensive to extract knowledge structures for measuring the security levels of large
scale dynamic networks. This research aims to develop novel technical methods in order to
solve this challenge. This report presents practical methodologies of data stream mining
based dynamic link anomaly analysis (DLAA) using novel sliding time window structures
and network analytics metrics.

The DNA is fundamentally tied to spatio-temporal analysis and the proposed DLAA is
the specialized network security research area of the DNA. We employ spatio-temporal link
analysis using paired data such as prior and current window data sets. The major purpose of
applying the sliding time window algorithm is to process manageable and meaningful paired
data to perform unsupervised learning. Each of the paired data sets is comprised of two
types of data such as spatio-temporal data and spatial data. Spatial data structure can be
modeled as a graph to represent spatial data that is a subset of spatio-temporal data. For
the DLAD, unsupervised learning is appropriate to learn and measure the past histories of
node-dependent, path- dependent and link appearance behaviors of dynamic networks from
the prior window data and predict link anomalies in the current window data.

For the DLAA, we have developed a dynamic link anomaly detection (DLAD) framework
to quantify the security levels of dynamic networks. The DLAD framework consists of three
algorithmic components including sliding time window, link scoring and link anomaly de-
tection algorithms. These components are operated by flow-based programming procedures.
The proposed framework was tested and evaluated using the VAST 2011 Mini Challenge
2 (MC2) datasets, including a case study. This case study was implemented with the IP
graphs and IP-port graphs, and illustrates the data analysis techniques. The performance of
the proposed framework is fully described using various statistical measures (i.e., sensitivity,
specificity, accuracy, precision and error rate, etc.) of the performance of a binary classi-
fication test. Through performance evaluation in the case study, we demonstrate that the
proposed framework has the capability to construct effective knowledge structures for mea-
suring the security levels of large scale dynamic networks, and to produce effective processed
stream data for generalized DNA.
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2. INTRODUCTION

The analytic computational complexity of networks has become increasingly challenging over
the past decades due to the ever growing size of networks and the explosion of information
exchanged over the Internet. Large scale networks can suffer from threats in many ways. For
example, network anomalies such as failure events of IP backbone, Denial of Service (DoS)
attacks, worm propagation, and network equipment outages have distinct characteristics but
are all potential threats, which may strongly affect the functionality and dependability of
networks in varying degrees.

In areas of network security management, network intrusion and anomaly detection [7,
13] can be roughly categorized as signature-based or data mining-based. Signature-based
schemes have the advantage of low false positives if signatures are well defined patterns in
advance. However, these schemes are not appropriate to detect zero-day attacks. There
has been progress in using network behavior anomaly detection (NBAD) to detect or pre-
dict unknown anomalies. As an integral part of network behavior analysis, the NBAD still
needs to establish knowledge of legitimate network connectivity and user behaviors over a
certain period of time. Machine learning based anomaly detection may be promising because
predefined signatures are not required, but challenges remaining to researchers are lack of
recent attack data and clean (attack-free) training data, difficulty of evaluation, and high
cost of errors [22]. There have been anomaly detection works looking at various aspects of
network anomalies. We note that the difference and focus of this work is on detecting link
anomalies in dynamic graphs that exhibit on/off patterns based only on network topologies
in the network security management domain.

Network anomalies have been manually or automatically identified in network traffic data by
applying the subspace method using multivariate time series of byte counts, packet counts,
and IP-flow counts [13]. Neighborhood formation has been studied for bipartite graphs [23].
Leman Akoglu et al. [1] proposed the OddBall algorithm to find anomalous nodes in a
graph. The authors use egonets, that is, the induced subgraph of an individual node (ego) of
interest and its neighbors, and assign an outlierness score to an individual node. Power law
density, weights, ranks and eigenvalues of the neighborhood subgraphs have proved useful
for anomaly detection. The graph-theoretic approach [11] has also been applied to detect
anomalies in email networks from the publicly available Enron email corpus.

In data mining domains, link mining [4, 8] and link prediction algorithms [17, 18] have
been introduced. In particular, there has been recent progress in link prediction and its
applications for a variety of domains such as social networks [10, 15], co-authorship networks
[19], healthcare and bioinformatics [2]. However, most works in link prediction are only
interested in predicting whether a pair of nodes that are not connected previously will ever
be connected in the future. Although link prediction algorithms will predict the feature
connections in a graph, most of them use a static graph as learning set without considering
inherent temporal information from the network traffic data. Often, the network presents
various dynamic behaviors [20] and traditional link prediction does not work well on datasets
with temporality. Instead, we focus on the task of detecting link anomalies [1, 11, 21, 23, 24]
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and address the dynamic ‘on/off” behavior of link anomalies, e.g., whether and when a
previously connected link will become disconnected. The malicious activities, which we refer
to as anomalies, may be related to faulty hardware/software, misconfiguration, or security
related events caused by malicious users and applications. While there have been some
efforts in anomaly-based intrusion detection [7], the detection of link anomalies has remained
challenging.

In this report, we introduce the network analytics metrics and sliding time window data
structures for the data stream mining in order to incorporate the link anomaly detection into
the DNA. Using knowledge structures from sliding time window data and network analytics
measures, we study how to measure and analyze network security on topological structures.
For better defense against zero-day attacks, we aim to utilize behavioral or learning based
approaches, such as a link prediction algorithm based approach which analyzes network con-
nections. The challenge lies in the fact that there are characteristics of anomaly detection
fundamentally different from link prediction tasks [18]. Although link prediction [10, 15]
may predict that a pair of nodes not connected in the past will be connected sometime in
the future, it does not consider pairs of nodes that have previously been connected. The
fundamental deficiency of traditional link predictions is that they do not consider the dy-
namics of network connections, e.g., the on/off patterns. It has been observed that networks
are not only becoming much larger but much more heterogeneous, complex and dynamic
as well. In computer networks, the massive amount of traffic among the computing nodes
is constantly changing. For example, users and/or applications may establish and discon-
nect the connections at any time. Different types of anomalies are formally modeled by
considering every possible combination of previously unlinked/linked nodes and currently
unlinked/linked nodes. In each sliding time window, each pair of nodes is assigned a link
score to measure its importance. The link scores will be used to predict whether the connec-
tions will be established or disconnected in the next time phase for a variety of situations.
Based on the actual connectivity in a current snapshot graph, we are able to judge whether
each link is anomalous or normal by examining the difference between the expected result and
reality. Through a case study and performance evaluation on publicly available datasets, we
illustrate the effectiveness of the link anomaly detection algorithm by comparing the eval-
uation metrics. We conclude that while this research has immediate benefits for network
security management in terms of security investigation and troubleshooting, the proposed
methodologies are general enough to have potential impact on many other types of network
applications. Time-efficient security-related investigation and effective troubleshooting can
be achieved by using the sliding time window based DLAA. For instance, network managers
and administrators are able to monitor manageable amounts of latest link anomalies for
further security investigations and threat preventions.

The main contribution of this paper is the development of the dynamic link anomaly de-
tection (DLAD) framework. Three algorithmic components of the framework are sliding
time window, link scoring and link anomaly detection algorithms. To keep the algorithms
generic, our approach does not need any background information such as node attributes,
but it is purely based on network topologies. Intuitively, the frequency of link appearances
is a critical factor to classify link anomalies. It is reasonable to assume that the connections
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occurring close to the time of investigation may receive more emphasis than connections
happening much earlier due to the temporal locality of packet exchanges and network flows.
Hence, our approaches to link analysis employs temporal dynamic, similarity and centrality
measurements on evolving network topologies in consecutive sliding time windows. These
temporal dynamic, and similarity and centrality factors are combined to compute an overall
link score as a coherent link anomaly measurement methodology.

3. METHODS, ASSUMPTIONS, AND PROCEDURES

3.1. Network Analytics Metrics

For various network analysis including social network analysis, node-dependent and path-
dependent metrics are generally used to characterize topological structures [18]. However,
these measurements are insufficient to characterize the dynamic network behaviors. There-
fore, we introduce network analytics metrics for spatio-temporal link analysis approach to
score security levels of dynamic links using paired sliding time window data.

In this section, we begin by introducing the network analytics metrics using graphs. A
graph is an ordered pair G = (V,E) comprising a set V of vertices or nodes u, v ∈ V
together with a set E of edges or links (u, v) ∈ E. Let G = (V,E) be an unweighted graph
that represents the topological structure of a general connected network. For each u ∈ V ,
let Γ(u) = {v : (u, v) ∈ E}, the set of vertices connected to u. In addition, for each l ≤ 1,

paths
(l)
u,v is the set of paths from u to v consisting of l edges (path of length l).

3.1.1. Node-Dependent Metric

The Jaccard index, also known as the Jaccard similarity coefficient, was originally designed
to measure the similarity between sample sets. For this report, the Jaccard index is selected
as a node-dependent metric to characterize nodes’ community similarity. It is defined as the
size of the intersection divided by the size of the union of the sets [5]. In the graph G, for
each pair of nodes v, u ∈ V , the Jaccard index is defined as the ratio between the number of
their common neighbors and the number of total neighbors, namely:

J(u, v) =
|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|

(1)

where, as previously, the cardinality of a set is denoted by placing absolute value signs around
the set.

In our approach, J(u, v) indicates whether network nodes u, v ∈ V , such as clients, servers,
and routers, have a large percentage of overlapping destinations regardless of the absolute
number of connecting targets.
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3.1.2. Path-Dependent Metric

The Katz index is useful in measuring centrality of which determines the relative importance
of a node within the network. The Katz index is selected as a path-dependent metric in order
to characterize centrality of the nodes in a graph. Originally L. Katz [12] proposed a path-
ensemble based proximity measure. The unweighted Katz index is used to measure the
centrality of a node by measuring a variant of the shortest-path [5], with two nodes to be
strongly related if their connecting paths tend to be short in length. The Katz index is
defined as [16]

K(u, v) =
∞∑
l=1

βl · |paths(l)u,v|, u, v ∈ V, (2)

where 0 < β < 1 is an attenuation parameter [3] ensuring that shorter paths contribute more
to the score [16].

In our approach, K(u, v) is computed to quantify link connectivity of nodes u and v.

3.1.3. Link Appearance Metric

The nonlinear weight function is used for the link appearance metric that characterizes the
temporal dynamics of connected nodes for link anomaly detection [14].

The nonlinear weight function is defined as

w (t) = e
−λ

1−
t

T


, t = 1, 2, ..., T (3)

where λ is an attenuation parameter (i.e., positive real number), and t is the tth snapshot
graph and T denotes the total number of snapshot graphs in the prior window.

The Link Appearance Index L(u, v) for (u, v) ∈ E is defined as

L(u, v) =

∑T
t=1w (t) · αt∑T
t=1w (t)

, (4)

where αt ∈ {0, 1} represents the link appearance at the tth snapshot in the prior window.
That is, αt = 1 is if the link is present (u, v connected) and αt = 0 if the link is absent (u, v
disconnected).

Equation 4 yields a weighted mean, taking into account the fact that appearances of links
at later snapshot graphs (or in other words closer to the time of investigation) should have
higher weights over the earlier graphs. It is reasonable to make such an assumption due to
the inherent temporal locality of network connections. Schemes such as network caching and
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Cisco NetFlow also assume that if a packet is observed between a source-destination IP/port
pair, it is likely that the source will send packets again to the destination in the near future.
For temporal link analysis, higher weights are assigned for later link appearances because
later appearance of connections is more important than earlier ones.

The Node-dependent metric (i.e., Jaccard index, Equation 1) and the path-dependent metric
(i.e., Katz index, Equation 2) are used to measure node similarity and link centrality. These
metrics are insufficient to detect anomalous links in dynamic and complex networks. More-
over, the complexity of computational time and memory are crucial factors to implement
real applications, but the Katz index has a limitation when applied to real-world networks
because its cubic time complexity O(|V |3), where |V | is the number of vertices in V [3, 9],
which makes it infeasible for analyzing a large network. In order to solve the fundamental
cubic complexity problem of the Katz measure and make the calculation more efficient for
large networks, we apply a heuristic method of partial simple paths by using the maximum
length as a limiting factor. Paths which are longer than the maximum value will not be
counted, partly due to the fact that in most cases, paths of shorter lengths will dominate the
measure. In addition to these metrics, the link appearance metric is also used to implement
feasible and efficient link anomaly detection mechanisms.

3.2. Dynamic Link Anomaly Detection

This section describes the overview of the dynamic link anomaly detection framework, and
introduces sliding time window, link scoring and anomaly detection algorithms.

3.2.1. Overview of the Framework

Figure 1 shows data flow diagram of overall processes of a component-based framework for
the link anomaly detection. Major algorithmic components of the framework consist of
three algorithmic components that are sliding time window, link scoring, and link anomaly
detection algorithms. These components are illustrated in Figure 1 and their algorithms are
introduced in this section.
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Figure 1. Data Flow Diagram
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Algorithm 1: Sliding Time Window Algorithm(τ, ω, ω′, D, i)

Input:
τ — time zone size
ω — prior window size
ω′ — current window size
where ω ≥ ω′

D — raw network flow data: spatio-temporal data
i — loop counter
Output:
F — ith prior filtered data: spatio-temporal data
F ′ — ith current filtered data: spatio-temporal data
G = 〈V,E〉 — ith prior graph: spatial data
G′ = 〈V,E ′〉 — ith current graph: spatial data

1 begin
2 foreach timestamp ∈ ((i− 1)× τ, (i− 1)× τ + ω] do
3 Di ← D(timestamp u ; v etc.)
4 F ← Di(timestamp u ; v)
5 G(u, v)← u, v

6 end
7 foreach timestamp′ ∈ (i× τ + ω − ω′, i× τ + ω] do
8 D′i ← D(timestamp′ u ; v etc.)
9 F ′ ← Di(timestamp

′ u v)
10 G′(u, v)← u, v

11 end
12 return F,G,G′

13 end
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Algorithm 2: Link Scoring Algorithm(β, γ, γ′, G,G′, F, i)

Input:
β — attenuation parameter
γ, γ′ — link scoring weights
G = 〈V,E〉 — ith prior graph
G′ = 〈V,E ′〉 — ith current graph
F — ith prior filtered data
i — loop counter
Output:
Si — ith link score table
Si,j(u,v) = [class ξu,v u v] — jth row vector of Si

1 begin
2 initialize Si
3 foreach ((u, v) /∈ E) ∧ ((u, v) ∈ E ′) do
4 Ju,v ← Jaccard(u, v,G)
5 Ku,v ← Katz(u, v,G, β)
6 ξu,v ← (1− γ′) · Ju,v + γ′ ·Ku,v

7 Si,j(u,v) ← [build ξu,v u v]

8 end
9 foreach ((u, v) ∈ E) ∧ ((u, v) ∈ E ′) do

10 Ju,v ← Jaccard(u, v,G)
11 Lu,v ← LinkAppearance(u, v, F )
12 ξu,v ← (1− γ) · Ju,v + γ · Lu,v
13 Si,j(u,v) ← [keep ξu,v u v]

14 end
15 foreach ((u, v) ∈ E) ∧ ((u, v) /∈ E ′) do
16 Ju,v ← Jaccard(u, v,G)
17 Lu,v ← LinkAppearance(u, v, F )
18 ξu,v ← (1− γ) · Ju,v + γ · Lu,v
19 Si,j(u,v) ← [tear ξu,v u v]

20 end
21 return Si
22 end
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Algorithm 3: Link anomaly detection Algorithm(Θ, G,G′, Si, i)

Input:
Θ = {θbuild, θLinkclass!keep, θtear} — thresholds
G = 〈V,E〉 — ith prior graph
G′ = 〈V ′, E ′〉 — ith current graph
i — loop counter
Si — ith link score table
Si,j(u,v) = [class ξu,v u v] — jth row vector of Si
Output:
Ai — ith link anomaly table
Ai,j(u,v) = [classtrue∨false ξu,v u v] — jth row vector of Ai

1 begin
2 initialize Ai
3 foreach ((u, v) /∈ E) ∧ ((u, v) ∈ E ′) do
4 if (ξu,v ≤ θbuild) then
5 Ai,j(u,v) ← [buildtrue ξu,v u v]
6 else
7 Ai,j(u,v) ← [buildfalse ξu,v u v]

8 end
9 foreach ((u, v) ∈ E) ∧ ((u, v) ∈ E ′) do

10 if (ξu,v ≤ θLinkclass!keep) then
11 Ai,j(u,v) ← [keeptrue ξu,v u v]
12 else
13 Ai,j(u,v) ← [keepfalse ξu,v u v]

14 end
15 foreach ((u, v) ∈ E) ∧ ((u, v) /∈ E ′) do
16 if (ξu,v ≥ θtear) then
17 Ai,j(u,v) ← [teartrue ξu,v u v]
18 else
19 Ai,j(u,v) ← [tearfalse ξu,v u v]

20 end
21 return Ai
22 end
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The flow-based programming procedures for the link anomaly detection are as follows:

1. Start running the program.

2. Input raw network traffic data D, time zone size τ , sliding time window size ω, link
scoring weights γ and γ′, an attenuation parameter β for Katz index, and a link
anomaly detection threshold set Θ = {θbuild, θLinkclass!keep, θtear}.

3. Send input data sets to appropriate algorithmic components.

4. Initialize loop counter (i = 1).

5. Run Component 1: Sliding Time Window Algorithm. The network traffic data is
parsed to get the prior window data (i.e., Di, F , and G), and the current window data
(i.e., D′i, F

′, and G′) according to prior and current sliding window intervals. The ith

prior filtered data F , and prior and current graphs G and G′ are sent to component 2
and/or component 3.

6. Run Component 2: Link Scoring Algorithm. The ith link score table Si is computed
using F , G and G′, and the results of (i) pairwise nodes connectivity statuses, (ii)
node-dependent, path-dependent and link appearance measures, and (iii) combined
weighted measures Si are sent to components 3 and appended to S.

7. Run Component 3: Link Anomaly Detection Algorithm. The ith link anomaly detection
table Ai is determined by G, G′, Si and threshold set Θ = {θbuild, θLinkclass!keep, θtear}.
The link anomaly detection is based on the results of (i) pairwise nodes connectivity
statuses, and (ii) link score and thresholds comparisons. Ai is appended to A.

8. Increment loop counter i by one.

9. Run the above three components until the end of the network traffic data or a user
stops the program.

An alternative method to create A is to extract A from S with subset pointers using the fact
that A can be a subset of S (A ⊆ S) after classifying anomalies. In this case, S and subset
pointers are stored in a database to further analyze link anomalies.

3.2.2. Sliding Time Window Algorithm

In our proposed DLAD framework (see Figure 1), the raw network traffic data D is processed
to form two types of sliding time window based processed data, namely the prior window data
and the current window data for unsupervised learning. The sliding time window algorithm
(see Algorithm 1) controls the raw network traffic data to produce the ith processed window
data with paired window sizes ω and ω′ and time zone size τ in the ith sliding time window
data processing. The prior window data consist of the ith prior traffic data Di, prior filtered
data F and prior graph (V,E) ∈ G, and the current window data consist of current traffic
data D′i, current filtered data F ′ and current graph (V ′, E ′) ∈ G′. The filtered data contain
the spatial-temporal information (i,e, nodes, edges and times), and the graphs contain the
spatial information (i.e., nodes and edges). The prior and current graphs are used to provide
the conditional expressions for scoring and detecting anomalous links. In addition to the
prior and current graphs, the prior filtered data is also used to weight the links to measure
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Table 1: Link Classes and Mathematical Notations

Link Class Mathematical Expression Threshold

build ((u, v) /∈ E) ∧ ((u, v) ∈ E′) θbuild

keep ((u, v) ∈ E) ∧ ((u, v) ∈ E′) θLinkclass!keep

tear ((u, v) ∈ E) ∧ ((u, v) /∈ E′) θtear

never linked ((u, v) /∈ E) ∧ ((u, v) /∈ E′) N/A

the temporal link appearance. Algorithm 1 shows the data representations of sliding time
window data processing. With pointers, dynamic data structures of sliding time widow based
processed data can be efficiently constructed or updated.

There are four classes of a link status for the paired sliding time window based link scoring
and link anomaly detection algorithms, as follows:

1. build ((u, v) /∈ E) ∧ ((u, v) ∈ E ′):
A pair of nodes u, v ∈ V was not connected in the prior graph, but the pair of nodes
are built the new link in the current graph.

2. keep ((u, v) ∈ E) ∧ ((u, v) ∈ E ′):
A pair of nodes u, v ∈ V was connected in the prior graph and the pair of nodes are
kept the link in the current graph.

3. tear ((u, v) ∈ E) ∧ ((u, v) /∈ E ′):
A pair of nodes u, v ∈ V was connected in the prior graph, but the pair of nodes are
torn down the link in the current graph.

4. never link ((u, v) /∈ E) ∧ ((u, v) /∈ E ′)):
A pair of nodes u, v ∈ V was not connected in both prior and current graphs. never
link status is excluded for our proposed link anomaly detection.

For link anomaly detection, unsupervised learning is appropriate to learn the past histories
of node-dependent, path dependent and link appearance behaviors and the prior and current
link statuses. With the link statuses, the prior link scores are computed in Algorithm 2, and
the anomalous prior links are detected in Algorithm 3.

3.2.3. Link Scoring Algorithm

The component 2 in Figure 1 processes pairwise nodes connectivity comparison, network
analytics measures and weighted link scoring computation, and produces the ith link score
table Si (see Algorithm 2).

Two pairs of metrics are selected based on conditional expressions of link statuses as follows:

• build ((u, v) /∈ E) ∧ ((u, v) ∈ E ′) :
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The node-dependent metric and the path-dependent metric are used to compute weighted
link scores. In this case, node similarity provides limited information because the paired
nodes {u, v} ∈ V are not connected in the prior graph and these nodes are connected in
the current graph. In the link anomaly detection, it is important to learn the new link
path because the attack path length is a critical factor for the conventional anomaly
detections. For example, longer path length is riskier than short path length in cyber
attack data. Thus, in addition to the node similarity measure, the path-dependent
metric is applied to determine whether a new link is anomalous.

• keep ((u, v) ∈ E) ∧ ((u, v) ∈ E ′) or tear ((u, v) ∈ E) ∧ ((u, v) /∈ E ′):
The node-dependent metric and the link appearance metric are used to compute weighted
link scores. Link status of keep or tear may not be stable and the link status could
change in a short time. Thus, in addition to node similarity and link centrality met-
rics, the link appearance metric is applied to provide temporal information of links,
i.e., times and frequencies of link appearances in the prior filtered data, for temporal
link analysis.

The computational complexity of the link scoring algorithm is polynomial time O(|V |3|E|).
Since it is less efficient to compute scores for all pairwise nodes in the prior graph, only
nodes that are actually connected in the current graph are used to compute the link scores,
thus |E| times. Relevant methods such as the Jaccard, Katz, and link appearance scores
are applied for each link. Due to the cubic complexity time of the Katz measure which
dominates the time complexity (O(|V |3)), the overall complexity is O(|V |3|E|). If fast Katz
[6] that runs at O(|V |+|E|) is used, then computational complexity could be further reduced
to O(|E|2 + |V ||E|).

3.2.4. Link anomaly detection Algorithm

The link anomaly detection algorithm (see Algorithm 3) processes the ith link anomaly table
Ai using the prior and current graphs G,G′, and the link score table S, with the user-
defined threshold set Θ. Our link prediction on whether a link in a network graph is normal
or anomalous is based on the conditional expressions of the link statuses in the prior and
current graphs, prior link scores, and thresholds. The ith link anomaly table Ai are appended
to the link anomaly table A. The link anomaly detection algorithm’s computational time
complexity is O(|E|).

The link score table S and the link anomaly table A are stored in the network security
auditing database for further dynamic network analysis and evaluation of the proposed link
scoring and detection algorithms.
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4. RESULTS AND DISCUSSION

4.1. Case Study

In this section, we conduct a case study using the VAST 2011 MC2 datasets that consist of
three days of firewall and intrusion detection system (IDS) logs as core information data from
the corporate network. These datasets are used to test and evaluate the proposed framework.
The task is to identify some interesting events in the datasets for situational awareness in the
corporate network. In this case study, the network flow data for log examination and security
is investigated to show how the proposed framework may help to discover link anomalies.

4.1.1. Data Sets and Procedures

Network traffic data contain important information such as source (src) and destination (dst)
Internet Protocol (IP) addresses, port numbers, timestamps, protocols, etc. We primarily
focus on link anomaly detection using IP graphs. In an IP graph, each node represents one
IP address and each edge represents a network connection between a source and destination
IP pair. We can also construct IP-port graphs by introducing the port numbers, e.g., srcIP
→ srcPort → dstPort → dstIP, resulting in heterogeneous graphs. The log files are loaded
into the dynamic link anomaly detection framework to construct two types of connectivity
graphs with either IP or IP-port nodes. The two graphs give different insights on the networks
with a tradeoff of granularity and complexity. The proposed framework employs flow-based
programming to execute components using the paired window data sets, parameters, and
thresholds for the link anomaly detection illustrated in 3.2.1.

4.1.2. Sliding Time Window Size Selection

For this case study, let the prior and current sliding time window sizes be the same, that
is, ω = ω′. Suppose that the sliding window size ω = ω′ is 15 minutes and the time zone τ
is 5 minutes (see Figure 2). With these parameters, the current window data are captured
based on the raw network flow data in the current 15-minute window together with the
overlapping prior 15-minute window (see Figure 1). The sliding time window controller will
move the current and prior windows forward 5 minutes for capturing network flow data in
the next iteration. The selections of the window size ω and time zone size τ are an important
factor to generate suitable link scores for the link anomaly detection. Figures 3 and 4 show
a comparison between the link appearance scores generated with a larger window size and
a smaller window size. Figure 3 shows the scores of an IP-port graph starting at 2011-04-13
12:07:00 in a 1-minute window size in the VAST 2011 MC2 datasets. The extremely low
link appearance scores are presented due to lack of connectivity records, making it hard to
differentiate connections for the dynamic link anomaly detection. Figure 4 increases the
graph size by enlarging the time window to 15 minutes. For this larger window, it is clear
that larger scores make it easier to differentiate connections and are better for link anomaly
detection. For other network flow data, a user should select other ω and τ because link
scores can vary depending on the volume of network flow data.
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Figure 2. Parameter Setting

Figure 3. Link Appearance Indexes of an IP-Port Graph ω = 1min
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Figure 4. Link Appearance Indexes of an IP-Port Graph ω = 15min

4.1.3. Thresholds for Cyber Attack Detection

The link score table S and the link anomaly table A are automatically generated. A user may
further analyze the suspicious links in a specific time range. For example, Figure 5 partially
shows a link score table that is ranked on day 1 (2011-4-13). Due to the space limitation
on the horizontal axis, only a few paired IP addresses and their link scores are displayed.
The node 192.168.1.14 and its associated nodes were built new connections and their link
scores are very low during port scan attacks. Figure 5 indicates that θbuild < 4.00E − 05
is a potential threshold to predict port scan attacks or other attacks. A group of machines
with IP addresses ranging from 192.168.2.11 to 192.168.2.138 connect to three particular
machines with IP 192.168.1.2, 192.168.1.6, and 192.168.1.14. Figure 6 shows this group and
highlighted paired nodes that indicate confirmed port scan activities from the IDS log. In
addition, workstations 192.168.2.171-175 are also the sources for many port scans to other
hosts in the subnet. These link anomalies are confirmed as compromised machines which
are starting to conduct port scanning and Denial of Service (DoS) attacks in the IDS log.
Turning to the other side of the connection score distribution, Figure 7 presents the DoS
attack related datasets and θtear > 0.1 as a potential threshold to predict the DoS attacks.
There was an attempted DoS attack against the corporate web server 172.20.1.15 for links
with 10.200.150.201, 206-9 on day 1 (2011-4-13). As a result of DoS attacks, the corporate
web server 172.20.1.15 was shut down. Subsequently all links that are connected to node
172.20.1.15 were torn down for a short time and yielded high link scores. While these
examples in the case study are results of cyber attacks, the proposed framework could be
useful in detecting any anomalous connections due to hardware failures or misconfigurations.
Therefore, it may also benefit other network management tasks such as troubleshooting and
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Figure 5. Link Score Distribution of an IP Graph and θbuild
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Figure 6. Link Score Tables

Figure 7. Link Score Distribution of an IP Graph, Logs and Anomaly List
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Figure 8. Multiclass Tree Representation of 4× 4 Confusion Matrix

diagnosing.

4.2. Performance Evaluation

4.2.1. Link Anomaly Classifications

Figure 8 depicts multiclass tree representation of 4×4 confusion matrix that shows a decision-
tree-like structure to illustrate the hierarchy of relationships regarding the 4 classes of a
link status, the 8 predictive classes and the 16 instances of actual classification results.
(Theoretically, for each link, there could be 16 classification results for 4 class-link anomaly
detection.) The 4 classes of each link status are build, keep, tear and never linked, defined
in Section 3.2.2. However, the never linked case is excluded in our current dynamic link
anomaly analysis, and will instead be investigated in future research.

In predictive analytics, a confusion matrix is used to visualize the performance of a binary
classifier. For each class of a link status, there are two predictive classes: anomalous (positive)
or normal (negative). For each link anomaly prediction, the prediction can turn out to be
either true or false, resulting in 4 instances such as true positive, false positive, true negative
and false negative. These instances are defined (see Figure 8) as follows:

• True Positive (TP): Anomalous link (P) is correctly identified.

• False Positive (FP): Anomalous link (P) is incorrectly identified.

• True Negative (TN): Normal link (N) is correctly identified and rejected.

• False Negative (FN): Normal link (N) is incorrectly identified and rejected.
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Figure 9. Hierarchical Aggregated Functions of Confusion Matrices
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Table 2: Terminology and Derivations of Classification Functions from Confusion
Matrix

Terminology Classification Function

Sensitivity True Positive Rate TPR =
TP

P
=

TP

TP + FN
(5)

Specificity True Negative Rate TNR =
TN

N
=

TN

TN + FP
(6)

1-Specificity False Positive Rate FPR =
FP

N
=

FP

FP + TN
(7)

Precision Positive Predictive Value PPV =
TP

TP + FP
(8)

Accuracy Accuracy Rate ACC =
TP + TN

P +N
=

TP + TN

TP + FN + TN + FP
(9)

Error Rate Recognition Rate ERR =
FP + FN

P +N
=

FP + FN

TP + FN + TN + FP
(10)

In this link anomaly research, four connection statuses (see 8 are identified and three of these
connection statuses are used. These 3-class link statuses in the prior and current graphs are
used to determine link scores and detect link anomalies. For overall performance evaluation,
the hierarchical aggregated functions of confusion matrices regardless of link statuses are
introduced to aggregate the classification results during the iterations or after completion
of iterations (see Figure 9). Note that |TP |i,j + |FP |i,j + |TN |i,j + |FN |i,j = 1 for each
link. The hierarchical aggregated functions enable one to convert multiclass classification to
binary classification. From additional datasets such as IDS log, we are able to evaluate the
link anomaly detection results via a confusion matrix.

Widely recognized classification functions (see Table 2) are selected to evaluate the proposed
framework. These functions include sensitivity (true positive rate, TPR in Equation 5),
specificity (true negative rate, TNR in Equation 6), 1-specificity (false positive rate, FPR in
Equation 7), precision (positive predictive value, PPV in Equation 8), accuracy (accuracy
rate, ACC in Equation 9), and error rate (recognition rate, ERR in Equation 10).
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Figure 10. 3-Threshold Selection Procedure Using a Binary Classifier

4.2.2. Multi-Thresholds Selection

Figure 10 illustrates the thresholds selection procedures. S is a link score table and Sbuild,
SLinkclass!keep, Stear are extracted from S. Each class link score table is individually ranked.
A simple strategy can be used to find Θ = {θbuild, θLinkclass!keep, θtear}, and use Receiver
Operating Characteristic (ROC) curve is used to determine the best Θ. Thresholds selection
procedures are as follows:

1. Let ψp ∈ Ψ. ψp is the pth percentage of link score sets where p = 1, 2, · · · , P .

2. Select Θp = {θpbuild, θ
p
Linkclass!keep, θ

p
tear} by mapping the ψp % of Sbuild, Sbuild and Stear.

3. Run Algorithm 3 with Θp.

4. Use the aggregated functions in Figure 9 to create pth confusion matrix.

5. Compute TPRp and FDRp.

6. Plot ROC curve using all TPRp and FDRp, and determine the best ψp.

7. Map the best ψp to select Θ = {θbuild, θLinkclass!keep, θtear}.

4.2.3. Performance of Classification

The ROC curve is an effective method to select the best operating point for a binary classi-
fier. We use the ROC curve to determine three thresholds to classify the three link classes.
Estimation of multi-thresholds for link anomaly detection is challenging because of dynamic
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Figure 11. Alternative Comparison of Various Thresholds in ROC Curve
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Figure 12. Performance Evaluation Results

link behaviors. Since VAST 2011 MC2 datasets were produced by simulating normal ac-
tivity and attacks, we apply the simple method of multi-thresholds estimation, instead of
using conventional multi-thresholds estimation techniques. The proposed approach is de-
scribed in Section 4.2.2. Figure 11 presents the operating points (i.e., ψp ∈ Ψp) and the
ROC curve indicates that ψ4 = 25% is the best operating point for mapping the thresholds
Θ4 = {θ4build, θ4Linkclass!keep, θ4tear} that can be used as Θ = {θbuild, θLinkclass!keep, θtear}. For the
DLAA, p ≥ 5 (i.e., ψp ≥ 25%) can be selected to analyze more suspicious links in the VAST
2011 MC2 datasets. This multi-thresholds selection method is inappropriate for real network
traffic data, but it is sufficient to demonstrate the effectiveness of sliding time window based
data stream mining.

After selecting the threshold set Θ, we perform 300 rounds of link anomaly detections with
the sliding time window starting from the beginning of the VAST 2011 MC2 network flow
data and moving towards the end of the data. For each time window, paired prior and current
window data are updated. The prior window data are used for learning and the current
window data are used for predicting link anomalies. The IDS log is used for verification
purposes.

For each round of testing, accuracy, error rate, sensitivity and specificity are measured
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using the aggregated confusion matrix for overall performance of link anomaly predictions
(see Figure 9). These measurements are used to evaluate the proposed framework. Figure
12 shows that the experimental results yielded roughly 75% overall accuracy, indicating
the effectiveness of scoring and detecting the link anomaly using the proposed framework.
The performance of the framework may be degraded unless parameters and thresholds are
adaptable for the real dynamic link data. However, the framework is appropriate to filter
and analyze anomalous links by adjusting threshold sets Θand parameters.

5. CONCLUSION

The DLAD framework of this report was developed to quantify the security levels of dy-
namic networks, and evaluated to show the effectiveness of data stream mining for the DNA.
Through performance evaluation, we demonstrated that the proposed framework has a capa-
bility to construct effective knowledge structures by measuring the security levels of dynamic
networks, and filtering anomalous or suspicious links from massive network traffic data. In
addition, the proposed sliding time window based method produces useful processed data
for data stream mining based generalized dynamic network analysis. This DLAA method
needs to be further developed to incorporate statistical based data stream mining.
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