

ICOSDA 2016

International Conference on Statistical Distributions and Applications

October 14-16, 2016

Crowne Plaza Hotel, Niagara Falls, Canada http://people.cst.cmich.edu/lee1c/icosda2016 /

ICOSDA 2016

Second International Conference on Statistical Distributions and Applications Crowne Plaza

October 14-16, 2016 Crowne Plaza Niagara Falls – Fallsview Hotel

Welcome!

On behalf of the Mathematics Department at Central Michigan University, I am honored to welcome you to the second International Conference on Statistical Distributions and Applications (ICOSDA). The Department is fully committed to providing high quality undergraduate and graduate programs, and contributing to the advancement of mathematics, statistics and mathematics education through quality research, as well as serving as a resource of knowledge and pedagogy for the community. We strive to create an integrated teaching, research and outreach unit to enhance the visibility, linkages and impact of mathematics, statistics and mathematics education at Central Michigan University and in the community. With the conference's goals and scopes, I believe the organizing committee has chosen a venue that guarantees a successful conference and productive contributions to the research of statistical distributions and their applications. The Department is delighted to sponsor ICOSDA 2016.

I appreciate each of you taking the time to participate in this conference. I would also like to recognize the local organizing committee members who have all worked extremely hard in planning all aspects of the conference programs. I am certain that this is going to be a great conference and you will enjoy all the events during the conference.

Best Wishes,

Thomas Gilsdorf **Jhomas Gilsdorf**

Professor and Chair Department of Mathematics, Central Michigan University

Thank you for your participation and welcome!

We would like to extend a very warm welcome to each and every participant in the second International Conference on Statistical Distributions and Applications (ICOSDA) taking place in Niagara Falls, Canada. It is indeed a great honor for Central Michigan University (CMU) and Brock University, Canada to serve as the host of the conference.

Participants are from many parts of USA, Canada and around the world, for a total of more than 190 participants coming from twenty-eight different countries. The Conference will feature keynote sessions, plenary invited sessions, concurrent topic-invited and general-invited sessions, and poster sessions. The Conference will provide opportunity for participants to exchange ideas and facilitate discussions on recent developments in statistical distributions, applications and other related areas. It will provide ideal forum to stimulate ideas, initiate contact and establish collaborations. Also, ICOSDA 2016 aims to provide an avenue for original discussion and prompt future directions in the area.

Authors of the papers presented at the conference will be asked to submit their full papers to the journal on theory and applications of statistical distributions, *Journal of Statistical Distributions and Applications (JSDA)*, for peer review. The accepted papers after the peer-review process will be published in a special issue of JSDA. More information on how to submit the papers are detailed in the program brochure and/or the conference website.

A large number of people have helped and worked hard for a successful ICOSDA 2016. First, we would like to thank all the topic-invited session organizers, who also serve as the scientific program committee members, and all the authors for submitting their papers for oral and poster presentations. Unfortunately, not all papers could be accepted. We would like to express our sincere appreciation to our keynote speakers and plenary invited speakers for accepting our invitation. We would like to thank members of the Organizing Committee for making excellent local arrangements and members of the Scientific Program Committee for the technical arrangements and organizing the topic-invited sessions. Sincere thanks go to the Mathematics Department graduate students and Statistics Club student members who generously volunteered their valuable time to organizing the conference. Our thanks go to various organizations and establishments for their generous donations in an effort to provide for every attendee the best conference possible. Finally, we would like to give special thanks to the Canadian Statistical Sciences Institute (CANSSI) and Mathematics Department at CMU for their financial support of the conference.

We hope you will find the conference fruitful and have a most enjoyable stay in Niagara Falls, Canada.

Sincerely yours,

Jamoye Carla

Ejaz Ahmed, Felix Famoye and Carl Lee The Organizing Committee Co-Chairs

Thank you to our sponsors

Canadian Statistical Sciences Institute Institut canadien des sciences statistiques

Department of Mathematics

^{Center for} Excellence in Teaching and Learning

Mcmillan Learning

Chapman & Hall/CRC Press, Taylor and Francis group

ICOSDA 2016

Important Conference Information

Registration Desk:

The Registration Desk is located at the Crowne Plaza Hotel, Brock Main Lobby (see the Conference Map for direction). The open hours are:

- October 14 (Friday): 3:00 pm 7:00 pm
- October 15 (Saturday): 7:00 am 5:00 pm
- October 16 (Sunday): 7:00 am 5:00 pm

This is the best place to ask questions and locate any lost items.

Conference Rooms:

There will be four concurrent sessions. The conference rooms, shown on the Conference Map, are

- Niagara Room: This is the main conference room. All of the keynotes and plenary talks will be held in this room. It will also be used for concurrent oral presentation sessions. Breakfast, Lunch and Dinner will be held in this room.
- Brock Room: This room is for concurrent oral presentation sessions.
- Elizabeth Room: This room is for concurrent oral presentation sessions.
- Canadian/B Room: This is on the 5th floor. It is also for concurrent oral presentation sessions.

Student Poster Presentation Room:

• Canadian/A Room located on the 5th Floor is for student poster presentations.

Meals:

The conference will provide all meals for registered participants during the conference time period, except dinner on October 16. This includes:

- Breakfast, Lunch and Dinner on October 15
- Breakfast and Lunch on October 16.

All meals are buffet style and will be served in the Niagara Room.

Please wear your name tag when you come for the meal.

Internet Connection:

Wireless Internet connection is available for the conference attendees. It will expire on October 17, 2016. Use the following code to access the Internet. The Username and Password are case sensitive.

Group: ICOSDA Username: icosda Password: Conference

Need a Presentation Certificate?

If you need a certificate of presentation, please e-mail Carl Lee (<u>carl.lee@cmich.edu</u>) by stating the exact name(s) and the title of presentation you would like to be printed on the certificate and the mailing address by October 31st. Your certificate of presentation will be mailed by Mid-November.

Equipment for Oral Presentation at the Conference Room:

All oral presentation rooms are equipped with a laptop computer, projection system and a wireless microphone.

- If you have submitted your presentation to the conference organizing committee (in PPT, PDF), it has been arranged and stored in a subfolder with the corresponding Session Number of your presentation inside the ICOSDA Folder on computer Desktop for easy access.
- If you have not submitted your presentation prior to your arrival or you have a revised/updated presentation, please make sure you transfer your presentation to the laptop during the intermission before your session.

Equipment and Set up for Student Poster Presentations:

The student poster presentations for those who registered as students are displayed in the **Canadian/A** Room. An easel and a board of 6' (width) x4' (height) is prepared and arranged for each poster.

- A card with the presenter's name is attached to each poster board. When you set up your poster presentation, please look for the designated easel and board.
- The poster must be set up no later than the intermission at 2:45 pm 3:00 pm on October 15, and will be displayed until Noon on October 16, unless you need to leave early.
- Every poster presenter must be at the poster between 5:45 pm 6:30 pm on October 15.

Sponsor Exhibition Area:

Springer Publishing will have an exhibition desk located at the Brock Main Lobby, next to the Registration Desk in the Brock Main Lobby.

Recycling Papers and Name Badge holders:

Please put papers and name badge holder that you do not want to take home in the recycling bins provided at the registration desk.

Evaluation and Suggestions:

A Conference Evaluation form is in your registration bag. Please fill the form and return it to the Registration Desk. We highly value your feedback about the conference for possible future conference.

Procedure for full paper submission to JSDA:

We would like to invite every presenter to submit the full paper of the presentation to the Journal of Statistical Distributions and Applications (<u>http://jsdajournal.com</u>) for consideration of possible publication in the special thematic series for ICOSDA 2016. The submitted papers will go through normal rigorous peer-review process of JSDA.

We have limited amount of fund to partially support the Article Processing Charge (APC). If the paper is accepted for the thematic series, 75% of the APC will be waived provided the paper is submitted by February 28, 2017. The support will be available until the fund runs out. If an associate editor of JSDA is a co-author, the full APC will be waived provided the paper is submitted by December 31, 2016.

Keynote Speakers

Dr. Peter McCullagh is John D. MacArthur Distinguished Service Professor
at the University of Chicago, Chicago, Illinois. He is a Fellow of the
Advancement of Science, the American Academy of Arts and Sciences
and the Royal Society. Peter's research focuses on probabilistic modelling, statistical theory, and the application of statistical methods in diverse areas, particularly in scientific research such as biostatistics, agricultural research, ecology and animal behaviour. Recent probabilistic work
includes boson point processes, exchangeability and random discrete structures such as random partitions, Gibbs random trees, random graphs and so on. Recent statistical work has focused on health monitoring and survival processes. Peter is the author of two books, Tensor Methods in Statistics, and Generalized Linear Models, with co-author John Nelder. He has served as editor of the journal Bernoulli, and as an associate editor of Biometrika, Journal of the Royal Statistical Society, and the Annals of the Institute of Statistical Mathematics.
Dr. Mei-Ling Ting Lee is the Director and professor of the Biostatistics &
Risk Assessment Center, Department of Epidemiology & Biostatistics,
University of Maryland, College Park, MD. Previously she was a faculty member at Boston University, Harvard University, and was professor and chair of the Department of Biostatistics at the Ohio State University. Dr. Lee is a biostatistician with a wide range of research interests. Her works in statistical distributions include dependence properties of multivariate distributions and generalizing the Sarmanov distributions. Dr. Lee is the founding editor and editor-in-chief of the international journal <i>Lifetime</i> <i>Data Analysis</i> , the only international statistical journal that is specialized in modeling time-to-event data. Dr. Lee has received many awards and recognitions including Fellow of the American Statistical Association, the Institute of Mathematical Statistics and Royal Statistical Society.
Dr. Kjell Doksum is Senior Scientist in the Statistics Department at the
Statistics Department at the University of California, Berkeley. He is a Fellow of the Institute of Mathematical Statistics and of the American Statistical Association, as well as an elected member of the International Statistical Institute and the Royal Norwegian Society of Sciences and Letters. His research focuses on statistical theory and modeling. It includes inference for nonparametric regression and correlation curves, global measures of association in semiparametric and nonparametric settings, estimation of regression quantiles, Bayesian nonparametric inference, and high dimensional data analysis. Applications include statistical modeling of HIV data, and the analysis of financial data. Kjell Doksum is the co-author with Peter Bickel of the book "Mathematical Statistics: Basic Concepts and Selected Topics. Volumes I and II", CRC Press.

Plenary Speakers

Plenary SpeakerElectrical and Mathematical Sciences and Engineering (CEMSE) at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia. Prof. Genton is a Fellow of the American Statistical Association for the Advancement of Science, and elected member of the International Statistical Institute. In 2010, he received the El-Shaarawi award for excellence from the International Environmetrics Society and the Distinguished Achievement award from the Section on Statistics and the Environment of the American Statistical Association. Prof. Genton has published over 180 articles in scientific journals, has edited a book on multivariate skew-elliptical distributions, and has given over 300 presentations at conferences and universities worldwide. Prof. Genton's research interests include statistical analysis, flexible modeling, prediction, and uncertainty quantification of spatio-temporal data, with applications in environmental and climate science, renewable energies, geophysics, and marine science.1:45 - 2:15 pm, Saturday Plenary SpeakerDr. Yi Li is a Professor of Biostatistics and Director of the Kidney Epidemiology and Cost Center, University of Michigan. His current research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. His group is developing methodologies for analyzing large-scale and high-dimensional datasets, with direct applications in observational studies as well in genetics/genomics. His methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is
Abdullah University of Science and Technology (KAUST) in Saudi Arabia.Prof. Genton is a Fellow of the American Statistical Association, of the Institute of Mathematical Statistics, of the American Association for the Advancement of Science, and elected member of the International Statistical Institute. In 2010, he received the El-Shaarawi award for excellence from the International Environmetrics Society and the Distinguished Achievement award from the Section on Statistics and the Environment of the American Statistical Association. Prof. Genton has published over 180 articles in scientific journals, has edited a book on multivariate skew-elliptical distributions, and has given over 300 presentations at conferences and universities worldwide. Prof. Genton's research interests include statistica analysis, flexible modeling, prediction, and uncertainty quantification of spatio-temporal data, with applications in environmental and climate science, renewable energies, geophysics, and marine science.1:45 - 2:15 pm, Saturday Plenary SpeakerDr. Yi Li is a Professor of Biostatistics and Director of the Kidney Epidemiology and Cost Center, University of Michigan. His current research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. His group is developing methodologies for analyzing large-scale and high-dimensional datasets, with direct applications in observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis.<
Prof. Genton is a Fellow of the American Statistical Association, of the Institute of Mathematical Statistics, of the American Association for the Advancement of Science, and elected member of the International Statistical Institute. In 2010, he received the EI-Shaarawi award for excellence from the International Environmetrics Society and the Distinguished Achievement award from the Section on Statistics and the Environment of the American Statistical Association. Prof. Genton has published over 180 articles in scientific journals, has edited a book on multivariate skew-elliptical distributions, and has given over 300 presentations at conferences and universities worldwide. Prof. Genton's research interests include statistical analysis, flexible modeling, prediction, and uncertainty quantification of spatio-temporal data, with applications in environmental and climate science, renewable energies, geophysics, and marine science.1:45 - 2:15 pm, Saturday Plenary SpeakerDr. Yi Li is a Professor of Biostatistics and Director of the Kidney Epidemiology and Cost Center, University of Michigan. His current research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. His group is developing methodologies for analyzing large-scale and high-dimensional datasets, with direct applications in observational studies as well in genetics/genomics. His methodologie research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor U is a Fellow of the American Statist
Institute of Mathematical Statistics, of the American Association for the Advancement of Science, and elected member of the International Statistical Institute. In 2010, he received the El-Shaarawi award for excellence from the International Environmetrics Society and the Distinguished Achievement award from the Section on Statistics and the Environment of the American Statistical Association. Prof. Genton has published over 180 articles in scientific journals, has edited a book on multivariate skew-elliptical distributions, and has given over 300 presentations at conferences and universities worldwide. Prof. Genton's research interests include statistical analysis, flexible modeling, prediction, and uncertainty quantification of spatio-temporal data, with applications in environmental and climate science, renewable energies, geophysics, and marine science.1:45 - 2:15 pm, Saturday Plenary SpeakerDr. Yi Li is a Professor of Biostatistics and Director of the Kidney Epidemiology and Cost Center, University of Michigan. His current research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. His group is developing methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis.2:15 - 2:45 pm, SaturdayDr. John Stufken is the Charles Weeller Profess
Advancement of Science, and elected member of the International Statistical Institute. In 2010, he received the El-Shaarawi award for excellence from the International Environmetrics Society and the Distinguished Achievement award from the Section on Statistics and the Environment of the American Statistical Association. Prof. Genton has published over 180 articles in scientific journals, has edited a book on multivariate skew-elliptical distributions, and has given over 300 presentations at conferences and universities worldwide. Prof. Genton's research interests include statistical analysis, flexible modeling, prediction, and uncertainty quantification of spatio-temporal data, with applications in environmental and climate science, renewable energies, geophysics, and marine science.1:45 - 2:15 pm, Saturday Plenary SpeakerDr. Yi Li is a Professor of Biostatistics and Director of the Kidney Epidemiology and Cost Center, University of Michigan. His current research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. His group is developing methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor I is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis.2:15 - 2:45 pm, SaturdayDr. John Stufken is the Charles Wexker Professor of Statistics in the School
Statistical Institute. In 2010, he received the El-Shaarawi award for excellence from the International Environmetrics Society and the Distinguished Achievement award for the Section on Statistics and the Environment of the American Statistical Association. Prof. Genton has published over 180 articles in scientific journals, has edited a book on multivariate skew-elliptical distributions, and has given over 300 presentations at conferences and universities worldwide. Prof. Genton's research interests include statistical analysis, flexible modeling, prediction, and uncertainty quantification of spatio-temporal data, with applications in environmental and climate science, renewable energies, geophysics, and marine science.1:45 - 2:15 pm, Saturday Plenary SpeakerDr. Yi Li is a Professor of Biostatistics and Director of the Kidney Epidemiology and Cost Center, University of Michigan. His current research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. His group is developing methodologies for analyzing large-scale and high-dimensional datasets, with direct applications in observational studies as well in genetics/genomics. His methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor of Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis.2:15 - 2:45 pm, SaturdayDr. John Sturken is the Charles Wexler Professor of Statist
 excellence from the International Environmetrics Society and the Distinguished Achievement award from the Section on Statistics and the Environment of the American Statistical Association. Prof. Genton has published over 180 articles in scientific journals, has edited a book on multivariate skew-elliptical distributions, and has given over 300 presentations at conferences and universities worldwide. Prof. Genton's research interests include statistical analysis, flexible modeling, prediction, and uncertainty quantification of spatio-temporal data, with applications in environmental and climate science, renewable energies, geophysics, and marine science. 1:45 - 2:15 pm, Saturday Plenary Speaker Dr. Yi Li is a Professor of Biostatistics and Director of the Kidney Epidemiology and Cost Center, University of Michigan. His current research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. His group is developing methodologies for analyzing large-scale and high-dimensional datasets, with direct applications in observational studies as well in genetics/genomics. His methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis. Dr. John Stufken is the Charles Weskler Professor of Statistics in the School of Mathematical Content and Christical Granter and Christical Statistics in the School
Distinguished Achievement award from the Section on Statistics and the Environment of the American Statistical Association. Prof. Genton has published over 180 articles in scientific journals, has edited a book on multivariate skew-elliptical distributions, and has given over 300 presentations at conferences and universities worldwide. Prof. Genton's research interests include statistical analysis, flexible modeling, prediction, and uncertainty quantification of spatio-temporal data, with applications in environmental and climate science, renewable energies, geophysics, and marine science.1:45 - 2:15 pm, Saturday Plenary SpeakerDr. Yi Li is a Professor of Biostatistics and Director of the Kidney Epidemiology and Cost Center, University of Michigan. His current research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. His group is developing methodologies for analyzing large-scale and high-dimensional datasets, with direct applications in observational studies as well in genetics/genomics. His methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis.2:15 - 2:45 pm, SaturdayDr. John Stufken is the Charles Weskler Professor of Statistics in the School of the thereticel Coincence of Statistics in the School of the themericen Cancer destre
 Environment of the American Statistical Association. Prof. Genton has published over 180 articles in scientific journals, has edited a book on multivariate skew-elliptical distributions, and has given over 300 presentations at conferences and universities worldwide. Prof. Genton's research interests include statistical analysis, flexible modeling, prediction, and uncertainty quantification of spatio-temporal data, with applications in environmental and climate science, renewable energies, geophysics, and marine science. 1:45 - 2:15 pm, Saturday Plenary Speaker Dr. Yi Li is a Professor of Biostatistics and Director of the Kidney Epidemiology and Cost Center, University of Michigan. His current research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. His group is developing methodologies for analyzing large-scale and high-dimensional datasets, with direct applications in observational studies as well in genetics/genomics. His methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis.
Published over 180 articles in scientific journals, has edited a book on multivariate skew-elliptical distributions, and has given over 300 presentations at conferences and universities worldwide. Prof. Genton's research interests include statistical analysis, flexible modeling, prediction, and uncertainty quantification of spatio-temporal data, with applications in environmental and climate science, renewable energies, geophysics, and marine science.1:45 - 2:15 pm, Saturday Plenary SpeakerDr. Yi Li is a Professor of Biostatistics and Director of the Kidney Epidemiology and Cost Center, University of Michigan. His current research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. His group is developing methodologies for analyzing large-scale and high-dimensional datasets, with direct applications in observational studies as well in genetics/genomics. His methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis.2:15 - 2:45 pm, SaturdayDr. John Stufken is the Charles Wexker Professor of Statistics in the School of Michigan land thervaria.
Image: Second
Presentations at conferences and universities worldwide. Prof. Genton's research interests include statistical analysis, flexible modeling, prediction, and uncertainty quantification of spatio-temporal data, with applications in environmental and climate science, renewable energies, geophysics, and marine science.1:45 - 2:15 pm, Saturday Plenary SpeakerDr. Yi Li is a Professor of Biostatistics and Director of the Kidney Epidemiology and Cost Center, University of Michigan. His current research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. His group is developing methodologies for analyzing large-scale and high-dimensional datasets, with direct applications in observational studies as well in genetics/genomics. His methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis.2:15 - 2:45 pm, SaturdayDr. John Stufken is the Charles Wexler Professor of Statistics in the School of thet particula and forticities foriame of the University.
research interests include statistical analysis, flexible modeling, prediction, and uncertainty quantification of spatio-temporal data, with applications in environmental and climate science, renewable energies, geophysics, and marine science.1:45 - 2:15 pm, Saturday Plenary SpeakerDr. Yi Li is a Professor of Biostatistics and Director of the Kidney Epidemiology and Cost Center, University of Michigan. His current research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. His group is developing methodologies for analyzing large-scale and high-dimensional datasets, with direct applications in observational studies as well in genetics/genomics. His methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis.2:15 - 2:45 pm, SaturdayDr. John Stufken is the Charles Wexler Professor of Statistics in the School of the themetical cancer form the diverge forter University.
prediction, and uncertainty quantification of spatio-temporal data, with applications in environmental and climate science, renewable energies, geophysics, and marine science.1:45 - 2:15 pm, Saturday Plenary SpeakerDr. Yi Li is a Professor of Biostatistics and Director of the Kidney Epidemiology and Cost Center, University of Michigan. His current research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. His group is developing methodologies for analyzing large-scale and high-dimensional datasets, with direct applications in observational studies as well in genetics/genomics. His methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis.2:15 - 2:45 pm, SaturdayDr. John Stufken is the Charles Wexler Professor of Statistics in the School
applications in environmental and climate science, renewable energies, geophysics, and marine science.1:45 - 2:15 pm, Saturday Plenary SpeakerDr. Yi Li is a Professor of Biostatistics and Director of the Kidney Epidemiology and Cost Center, University of Michigan. His current research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. His group is developing methodologies for analyzing large-scale and high-dimensional datasets, with direct applications in observational studies as well in genetics/genomics. His methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis.2:15 - 2:45 pm, SaturdayDr. John Stufken is the Charles Wexler Professor of Statistics in the School or flacther and Chariting Concers of Antiper Schot Linicar Schot Linicaria
geophysics, and marine science.1:45 - 2:15 pm, Saturday Plenary SpeakerDr. Yi Li is a Professor of Biostatistics and Director of the Kidney Epidemiology and Cost Center, University of Michigan. His current research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. His group is developing methodologies for analyzing large-scale and high-dimensional datasets, with direct applications in observational studies as well in genetics/genomics. His methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis.2:15 - 2:45 pm, SaturdayDr. John Stufken is the Charles Wexler Professor of Statistics in the School or Mathemetical end Charles Wexler Professor of Statistics in the School
1:45 - 2:15 pm, Saturday Plenary SpeakerDr. Yi Li is a Professor of Biostatistics and Director of the Kidney Epidemiology and Cost Center, University of Michigan. His current research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. His group is developing methodologies for analyzing large-scale and high-dimensional datasets, with direct applications in observational studies as well in genetics/genomics. His methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis.2:15 - 2:45 pm, SaturdayDr. John Stufken is the Charles Wexler Professor of Statistics in the School
Plenary SpeakerEpidemiology and Cost Center, University of Michigan. His current research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. His group is developing methodologies for analyzing large-scale and high-dimensional datasets, with direct applications in observational studies as well in genetics/genomics. His methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis.2:15 - 2:45 pm, SaturdayDr. John Stufken is the Charles Wexler Professor of Statistics in the School
 research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. His group is developing methodologies for analyzing large-scale and high-dimensional datasets, with direct applications in observational studies as well in genetics/genomics. His methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis. 2:15 - 2:45 pm, Saturday
 analysis, measurement error problems, spatial models and clinical trial designs. His group is developing methodologies for analyzing large-scale and high-dimensional datasets, with direct applications in observational studies as well in genetics/genomics. His methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis. 2:15 - 2:45 pm, Saturday
 designs. His group is developing methodologies for analyzing large-scale and high-dimensional datasets, with direct applications in observational studies as well in genetics/genomics. His methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis. 2:15 - 2:45 pm, Saturday Dr. John Stufken is the Charles Wexler Professor of Statistics in the School of Mathematical and Cattitical Sciences at Arisene State University.
 and high-dimensional datasets, with direct applications in observational studies as well in genetics/genomics. His methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis. 2:15 - 2:45 pm, Saturday Dr. John Stufken is the Charles Wexler Professor of Statistics in the School of Mathematical and Statistical Sciences at Arisana State University.
 studies as well in genetics/genomics. His methodologic research is funded by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis. 2:15 - 2:45 pm, Saturday Dr. John Stufken is the Charles Wexler Professor of Statistics in the School of Mathematical and Statistical Councer of Statistics in the School
by various NIH statistical grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis. Dr. John Stufken is the Charles Wexler Professor of Statistics in the School of Mathematical and Statistical Sciences at Arizona State University.
 involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis. 2:15 - 2:45 pm, Saturday Dr. John Stufken is the Charles Wexler Professor of Statistics in the School of Mathematical and Statistical Colourants of Anathematical Colourants of Anathematical
 studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis. 2:15 - 2:45 pm, Saturday Dr. John Stufken is the Charles Wexler Professor of Statistics in the School of Mathematical and Statistical Colonese at Arizona State University.
University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis. 2:15 - 2:45 pm, Saturday Dr. John Stufken is the Charles Wexler Professor of Statistics in the School of Mathematical and Statistical Sciences at Arizona State University
 surveillance, organ transplantation, cancer preventive studies and cancer genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis. 2:15 - 2:45 pm, Saturday Dr. John Stufken is the Charles Wexler Professor of Statistics in the School of Mathematical and Statistical Colones at Arizona Statistics in the School
genomics. Professor Li is a Fellow of the American Statistical Association and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis.2:15 - 2:45 pm, SaturdayDr. John Stufken is the Charles Wexler Professor of Statistics in the School of Mathematical and Statistical Sciences at Arizona State University
and has been serving as associate editor in various journals including JASA, Biometrics, and Lifetime Data Analysis.2:15 - 2:45 pm, SaturdayDr. John Stufken is the Charles Wexler Professor of Statistics in the School of Mathematical and Statistical Sciences at Arizona State University
JASA, Biometrics, and Lifetime Data Analysis. 2:15 - 2:45 pm, Saturday Dr. John Stufken is the Charles Wexler Professor of Statistics in the School of Mathematical and Statistical Sciences at Arizona State University
2:15 - 2:45 pm, Saturday Dr. John Stutken is the Charles Wexler Professor of Statistics in the School
Plenary Speaker Or Mathematical and Statistical Sciences at Arizona State University.
Previously he served as Head of the Department of Statistics at the
University of Georgia (2003-2014) and as Program Director for Statistics in
the Division of Mathematical Sciences at the National Science Foundation
(2000-2003). He also held faculty positions at lowa State University (1988-
2002) and the University of Georgia (1986-1990). His primary area of
research interest is design and analysis of experiments. He is co-author of
the book Orthogonal Arrays: Theory and Applications (1999, Springer
verlag, with A. Hedayat and N.J.A. Sloane), and co-Editor of the Handbook
D Design and Analysis of Experiments (2015, Chapman and Hall/CRC, With
D. Bingham, A. Dean and W. Worris). He serves currently as Associate
Eultor for the Journal of the American Statistical Association, Statistica
Sinica, and the Journal of Statistical Theory and Practice. He served as
Executive Editor for the Journal of Statistical Planning and interence
an elected Fellow of the Institute of Mathematical Statistics (2000) and of

	the American Statistical Association (2001), and was the Rothschild Distinguished Visiting Fellow at the Isaac Newton Institute for Mathematical Sciences in Cambridge, UK, for the program on Design and Analysis of Experiments in 2011.
1:15 - 1:45 pm, Sunday Plenary Speaker	Dr. Gwo Dong Lin is a Research Fellow in the Institute of Statistical Science at Academia Sinica, Taiwan. He is an Elected Member of the International Statistical Institute and has served or is serving as an Associate Editor of several journals including Statistica Sinica, IEEE Transactions on Reliability, Journal of Statistical Distributions and Applications, and Statistics-A Journal of Theoretical and Applied Statistics. His research interests include Distribution Theory, Applied Probability and Survival Analysis. He has published over 70 papers in a variety of theoretical and applied journals such as Bernoulli, Probability Theory and Related Fields, Sankhya, JAP, TPA, JOTP, JMVA, AISM, JSPI, JSDA, JMAA, and others.
1:45 - 2:15 pm, Sunday Plenary Speaker	Dr. Anand Vidyashankar is a Professor at George Mason University. He received his doctoral degree in mathematics and statistics at Iowa State University. His research interests span a wide variety of areas including branching processes, large deviations, high-dimensional data analysis, robust inference, stochastic fixed point equations, clinical trials, financial and actuarial risk assessment, machine learning, non-parametric methods, and statistical foundations. His research has been supported by industry extensively and by the NSF.
2:15 - 2:45 pm, Sunday Plenary Speaker	Dr. Fraser is a Professor Emeritus at the University of Toronto, Toronto, Canada. His Bachelor's degree is from the University of Toronto and his PhD is from Princeton University. He has held visiting positions at many establishments including Princeton University, Stanford University, University of Wisconsin, University of Geneva and University College, London. Dr. Fraser has numerous honors and awards. He is a Fellow of many professional societies including Institute of Mathematical Statistics, Royal Statistical Society, American Statistical Association, Royal Society of Canada, American Association for the Advancement of Science, and American Mathematical Society. His research interests include, but not limited to likelihood asymptotic theory, large sample theory of statistics, Bayesian analysis and qualitative data analysis. Dr. Fraser is the author of many popular books including <i>Nonparametric Methods in Statistics, The</i> <i>Structure of Inference</i> , and <i>Inference and Linear Models</i> . He is currently addressing the conflicts between reproducibility and 'objective' Bayesian methodology

Keynote and Plenary Speakers (By Time Order)

Date	Start	Туре	Name	Title	Room
	Time				
Oct 15	8:00 AM	Keynote	McCullagh, Peter	Statistical models for survival processes	NI
Oct 15	7:30 PM	Keynote	Lee, Mei-Ling Ting	From Bacon and Eggs to Fréchet Shock- Degradation Models	NI
Oct 16	8:00 AM	Keynote	Doksum, Kjell	Ensemble subspace methods for high dimensional data	NI
Oct 15	1:15 PM	Plenary	Genton, Marc G.	Tukey g-and-h random fields and max- stable processes	NI
Oct 15	1:45 PM	Plenary	Li, Yi	Classification with Ultrahigh- Dimensional Features	NI
Oct 15	2:15 PM	Plenary	Stufken, John	Optimal design and subdata selection for big data	NI
Oct 16	1:15 PM	Plenary	Lin, Gwo Dong	Recent Developments on the Moment Problem	NI
Oct 16	1:45 PM	Plenary	Vidyashankar, Anand	Networks in High Dimensional Problems	NI
Oct 16	2:15 PM	Plenary	Fraser, Don	Distributional methods have changed statistical inference	NI

Abstracts for Keynote and Plenary Speakers (Alphabetic Order)

Keynote	Doksum, Kjell				
Title	Ensemble subspace methods for high dimensional data				
We consider high dimens	sional regression frameworks where the number p of predictors exceed the				
number <i>n</i> of subjects. Re	cent work in high dimensional regression analysis has embraced an approach				
that consists of selecting random subsets with fewer than <i>n</i> predictors, doing statistical analysis on each					
subset, and then merging the results from the subsets. This ensemble approach makes it possible to					
construct methods for high dimensional data using methods designed for low dimensional data.					
Moreover, penalty methods such as Lasso that are unstable when <i>p>n</i> unless very stringent conditions					
are imposed, perform much better when used in the ensemble approach. We examine the extent of the					
improvement achieved by the ensemble approach when it is applied to Lasso, Lars, and the Elastic Net.					
Comparisons are also made with variable selection methods.					
Keynote	Lee, Mei-Ling Ting				

Keynote	Lee, Mei-Ling Ting
Title	From Bacon and Eggs to Fréchet Shock-Degradation Models

ICDSDA 2016

Some distributions arise naturally to meet practical needs. I'll discuss two interesting examples, Sarmanov multivariate distributions and Fréchet shock-degradation models.

One can generate many multivariate distributions having given marginals. The density of the bivariate Sarmanov distributions with beta marginal can be expressed as a linear combination of products of independent beta densities. This pseudo conjugate property greatly reduces the complexity of posterior computations when this bivariate beta distribution is used as a prior (Lee, 1996). An interesting marketing study found that people who purchase bacon will often buy eggs, hence the bivariate beta-binomial distributions applied well in analyzing the data. Recently the method has also been applied in multivariate meta analysis.

Many systems experience gradual degradation while simultaneously being exposed to a stream of random shocks that eventually cause failure when the shock exceeds the residual strength of the system. This failure mechanism is found in diverse fields of application. A tractable new family of Fréchet shock-degradation models will be presented. This family has the attractive feature of defining the failure event as a first passage event and the time to failure as a first hitting time (FHT) of a threshold by an underlying stochastic process. The Fréchet shock-degradation family includes a wide class of underlying degradation processes. We derive the survival function for the shock-degradation process as a convolution of the Fréchet shock process and any candidate degradation process that possesses stationary independent increments (Lee, Whitmore 2016). Statistical properties of the survival distribution will be discussed.

Keynote	McCullagh, Peter			
Title	Statistical models for survival processes			
The focus of a survival st	udy is partly on the distribution of survival times, and partly on the health or			
quality of life of patients	while they live. Health varies over time, and survival is the most basic aspect of			
health, so the two aspect	ts are closely intertwined. Depending on the nature of the study, a range of			
variables may be measured; some constant in time, others not; some regarded as responses, others as				
explanatory risk factors; some directly and personally health-related, others less directly so. We begin by				
classifying variables that may arise in such a setting, emphasizing in particular, the mathematical				
distinction between vital variables, non-vital variables and external or exogenous variables. The goal is to				
construct a family of continuous-time stochastic process for vital health variables, and to use such				
models for the analysis of data collected intermittently in time, especially in situations where mortality is				
appreciable.				
Plenary	Fraser. Don			

•				
Title	Distributional methods have changed statistical inference			
Saddlepoint methods ent	tered statistics rather slowly: Henry Daniels in 1954 then Barndorff-Nielsen and			
Cox 1979, just 25 years. But since then the methods have radically changed the landscape for the core				
methods of inference. And p-values no longer need to be in the wild west stage. We briefly survey the				
distributional methods th	nat altered the statistical landscape.			

TitleTukey g-and-h random fields and max-stable processesWe propose a new class of trans-Gaussian random fields named Tukey g-and-h (TGH) random fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions passible about and (or because toiled, and therefore, have a wide range of applications).	Plenary	Genton, Marc G.
We propose a new class of trans-Gaussian random fields named Tukey g-and-h (TGH) random fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions are able to be any tailed and therefore have a wide range of applications.	Title	Tukey g-and-h random fields and max-stable processes
model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal	We propose a new class of	of trans-Gaussian random fields named Tukey g-and-h (TGH) random fields to
distributions, possibly showed and for beauty tailed, and therefore, have a wide range of applications	model non-Gaussian spat	ial data. The proposed TGH random fields have extremely flexible marginal
distributions, possibly skewed and/or neavy-tailed, and, therefore, have a wide range of applications.	distributions, possibly ske	ewed and/or heavy-tailed, and, therefore, have a wide range of applications.
The special formulation of the TGH random field enables an automatic search for the most suitable	The special formulation of	of the TGH random field enables an automatic search for the most suitable
transformation for the dataset of interest while estimating model parameters. Asymptotic properties of		
the maximum likelihood estimator and the probabilistic properties of the TGH random fields are		
investigated. An efficient estimation procedure, based on maximum approximated likelihood, is	investigated. An efficient	estimation procedure, based on maximum approximated likelihood, is
proposed and an extreme spatial outlier detection algorithm is formulated. Kriging and probabilistic	proposed and an extreme	e spatial outlier detection algorithm is formulated. Kriging and probabilistic
prediction with TGH random fields are developed along with prediction confidence intervals. The	prediction with TGH rand	om fields are developed along with prediction confidence intervals. The
predictive performance of TGH random fields is demonstrated through extensive simulation studies and	predictive performance of	of TGH random fields is demonstrated through extensive simulation studies and
an application to a dataset of total precipitation in the south east of the United States. Extensions of	an application to a datase	et of total precipitation in the south east of the United States. Extensions of
these ideas to the construction of new spatial max-stable processes are presented as well.	these ideas to the constru	uction of new spatial max-stable processes are presented as well.

-

CMU ENTRAL MICHIGAN UNIVERSITY	TCDSDA-2016 Brock				
Plenary	Li, Yi				
Title	Title Classification with Ultrahigh-Dimensional Features				
Although much pro	gress has been made in classification with high-dimensional features, classification				
with ultrahigh-dim	ensional features, wherein the features much outnumber the sample size, defies most				
existing work. This	paper introduces a novel and computationally feasible multivariate screening and				
classification methe	od for ultrahigh-dimensional data. Leveraging inter-feature correlations, the proposed				
method enables de	tection of marginally weak and sparse signals and recovery of the true informative				
feature set, and ac	hieves asymptotic optimal misclassification rates. We also show that the proposed				
procedure provide:	s more powerful discovery boundaries compared to those in Cai and Sun (2014) and				
Jin et al. (2009). Th	e performance of the proposed procedure is evaluated using simulation studies and				
demonstrated via d	classification of patients with different post-transplantation renal functional types.				
Plenary	Lin, Gwo Dong				
Title Recent Developments on the Moment Problem					
We consider univariate distributions with finite moments of all positive orders. The moment problem is					
to determine whet	her or not a given distribution is uniquely determined by the sequence of its				
moments. There is	an inexhaustible literature on this classical topic. In this survey, we focus only on the				
recent developmer	its on the checkable moment-(in)determinacy criteria including Cramer's condition,				
Carleman's condition	on, Hardy's condition, Krein's condition and the growth rate of moments, which help				
concorned with dis	tributions on the whole real line, while the latter deals only with distributions on the				
right half-line Som	e new results or new simple (direct) proofs of previous criteria are provided. Finally				
we review the mos	t recent problem for products of independent random variables with different				
distributions, which occur naturally in stochastic modelling of complex random phenomena					
The three for and	Optimal design and subdata selection for big data				
The theory for optimal design has been developed for experiments that, typically, yield "small" amounts					
or data. Consequently, there is no immediate connection to big data. However, it big data is really big,					
experimental design, this amounts to a selection problem, namely that of selecting appropriate subdate					
We will discuss how ideas from design of experiments can below to select subdata indiciously.					
New win discuss now ideas nom design of experiments can help us to select subdata judiciously.					
Plenary					
litle	Implicit Networks in High Dimensional Problems				
In a variety of cont	emporary applications, especially those involving big-data, it is becoming a common				
important information	tion concerning according between a response and a set of features, they feil to				
important information concerning associations between a response and a set of features, they fail to					

important information concerning associations between a response and a set of features, they fail to capture the global characteristics of the feature set. To address some of these limitations, we introduce the concept of supervised implicit networks and investigate the theoretical properties of various network wide metrics (NWM). Specifically, we provide an assessment of variability in the statistical estimates of NWM and discuss their use in the context of data analysis. Finally, we apply these methods to develop supervised clustering algorithms and use it to identify communities in the network.

Topic-Invited Sessions: Topics and Organizers

Room Abbreviation: NI – Niagara Room, BR - Brock Room, EL – Elizabeth Room, CAN/B – Canadian Room/B

Session	Торіс	Organizer	Date	Time	Room
TI 1	Applications of Statistical Distributions in	Sarabia, Jose	Oct	9:15 am -	NI
	Business, Management and Economics	Maria	15	10:35 am	
TI 2	Some Recent Issues and Methods in	Yi, Grace	Oct	9:15 am -	BR
	Statistics and Biostatistics		15	10:35 am	
TI 3	Relative Belief Inferences	Evans,	Oct	9:15 am -	EL
		Michael	15	10:35 am	
TI 4	Recent developments in designs and analysis	Xu, Xiaojian	Oct	9:15 am -	CAN/B
	of statistical experiments		15	10:35 am	
TI 5	Generalized distributions and its application	Alzaatreh,	Oct	3:00 pm -	NI
		Ayman	15	4:20pm	
TI 6	Don't Count on Poisson! Introducing the	Sellers,	Oct	3:00 pm -	BR
	Conway-Maxwell-Poisson distribution for	Kimberly	15	4:20pm	
	statistical methodology regarding count data				
TI 7	Extreme Value Distributions and Models	Huang,	Oct	3:00 pm -	EL
		Mei-Ling	15	4:20pm	
TI 8	Moment-Based Methodologies for	Provost,	Oct	3:00 pm -	CAN/B
	Approximating and Estimating Density	Serge B.	15	4:20pm	
тіо	Panandanca madalling with applications in	Furman	Oct	0:15.2m	NI
119	insurance and finance	Furman, Edward		9.15 am	INI
TI 10	Multivariate distributions	Richtor	10	0:15 am	DD
11 10		Wolf-Dieter		9.15 am	DN
TI 11	Rayosian analysis for highly structured	Forroira	10 Oct	9:15 am -	FI
	processes	Marco A. R.	16	10:35 am	
TI 12	Recent development on Complex Data	Gao Xiaoli	10 Oct	9:15 am -	CAN/B
11 12	Analysis		16	10:35 am	C/ III / D
TI 13	Copula Modeling of Discrete Dependent	De Oliveira.	Oct	10:50 am -	NI
	Data	Victor	16	12:10 pm	
TI 14	Statistics and Modelling	Stehlik, Milan	Oct	10:50 am -	CAN/B
			16	12:10 pm	,
TI 15	Copula Theory and Applications to Insurance	Cooray.	Oct	3:00 pm -	NI
_	and Finance	Kahadawala	16	4:20pm	
TI 16	Bayesian approaches on models and	Cheng, Chin-I	Oct	3:00 pm -	BR
	distributions estimation		16	4:20pm	
TI 17	Compounding and Copulas: Generalized and	Oluyede,	Oct	3:00 pm -	EL
	Extended Distributions	Broderick O.	16	4:20pm	
TI 18	Modeling complex data	Amezziane,	Oct	3:00 pm -	CAN/B
		Mohamed	16	4:20pm	
TI 19	Mixtures of Non-Gaussian Distributions with	McNicholas,	Oct	4:30 pm -	NI
	Applications in Clustering	Paul	16	5:50 pm	
TI 20	Likelihood-based Inference: Methods and	Coelho,	Oct	4:30 pm -	BR
	Applications	Carlos A.	16	5:50 pm	

CENTRAL MICHIGAN	ICDSDA-20		Breck		
TI 21	Statistical Methods for Analysis of Industrial and Medical Data	Ng, Hon Keung Tony	Oct 16	4:30 pm - 5:50 pm	EL
TI 22	Construction of new statistical distributions and statistical data modeling	Akinsete, Alfred	Oct 16	4:30 pm - 5:50 pm	CAN/B

Topic-Invited Session: Presenters (in Alphabetic Order)

Session Name: TI m_k (m_k = kth speaker in mth session)

Room Abbreviation: NI – Niagara Room, BR - Brock Room, EL – Elizabeth Room, CAN/B – Canadian Room/B

Name	Session	Date	Start	Roo
Al-Aqtash, Raid	TI 22_3	Oct 16	5:10 PM	CAN/B
Al-Labadi, Luai	TI 3_4	Oct 15	10:15 AM	EL
Alzaatreh, Ayman	TI 5_4	Oct 15	4:00 PM	NI
Arslan, Olcay	TI 10_2	Oct 16	9:35 AM	BR
Baharith, Lamya A.	TI 17_1	Oct 16	3:00 PM	EL
Brill, Percy and Huang, Mei Ling	TI 7_1	Oct 15	3:00 PM	EL
Chatterjee, Arpita	TI 16_2	Oct 16	3:20 PM	BR
Cheng, Chin-I	TI 16_4	Oct 16	4:00 PM	BR
Choo-Wosoba, Hyoyoung	TI 6_3	Oct 15	3:40 PM	BR
Christara, Christina C.	TI 14_4	Oct 16	11:50 AM	CAN/B
Coelho, Carlos A.	TI 20_4	Oct 16	5:30 PM	BR
Cooray, Kahadawala	TI 15_4	Oct 16	4:00 PM	NI
Cossette, Hélène/Itre Mtalai/Etienne Marceau/Déry	TI 9_1	Oct 16	9:15 AM	NI
Dang, Sanjeena	TI 19_1	Oct 16	4:30 PM	NI
Dang, Utkarsh	TI 19_3	Oct 16	5:10 PM	NI
De Oliveira, Victor	TI 13_4	Oct 16	11:50 AM	NI
Evans, Michael	TI 3_1	Oct 15	9:15 AM	EL
Fang, Yixin	TI 12_3	Oct 16	9:55 AM	CAN/B
Filus, Jerzy	TI 14_2	Oct 16	11:10 AM	CAN/B
Filus, Lidia	TI 14_1	Oct 16	10:50 AM	CAN/B
Gallaugher, Michael	TI 19_2	Oct 16	4:50 PM	NI
Ghosh, Indranil	TI 5_3	Oct 15	3:40 PM	NI
Giurcanu, Mihai	TI 18_4	Oct 16	4:00 PM	CAN/B
Gomez-Deniz, Emilio	TI 1_2	Oct 15	9:35 AM	NI
Hamedani, Gholamhossein	TI 5_2	Oct 15	3:20 PM	NI
He, Jianghua	TI 16_1	Oct 16	3:00 PM	BR
He, Wenqing	TI 2_2	Oct 15	9:35 AM	BR
Hirose, Kei	TI 12_1	Oct 16	9:15 AM	CAN/B
Hlynka, Myron	TI 7_3	Oct 15	3:40 PM	EL
Hoegh, Andrew	TI 11_4	Oct 16	10:15 AM	EL
Hughes, John	TI 13_1	Oct 16	10:50 AM	NI
Ishimura, Naoyuki	TI 14_3	Oct 16	11:30 AM	CAN/B
Jang, Gun Ho and Stein, Lincoln	TI 3_2	Oct 15	9:35 AM	EL
Jayalath, Kalanka	TI 21_2	Oct 16	4:50 PM	EL
Jevtić, Petar/Hurd, Thomas R.	TI 9_4	Oct 16	10:15 AM	NI
Keefe, Matthew J.	TI 11_3	Oct 16	9:55 AM	EL
Kim, Jong-Min	TI 17_2	Oct 16	3:16 PM	EL

CMU EXTRA MEMORY INITESITY INITESITY	-201	6	Bre	
Kleiber, Christian	TI 10_3	Oct 16	9:55 AM	BR
Li, Pengfei	TI 4_3	Oct 15	9:55 AM	CAN/B
Madsen, Lisa	TI 13_2	Oct 16	11:10 AM	NI
Mailhot, Mélina	TI 9_3	Oct 16	9:55 AM	NI
Makubate, Boikanyo	TI 17_5	Oct 16	4:04 PM	EL
Mallick, Avishek	TI 22_4	Oct 16	5:30 PM	CAN/B
Mandal, Saumen	TI 4_1	Oct 15	9:15 AM	CAN/B
McNicholas, Paul	TI 19_4	Oct 16	5:30 PM	NI
Morris, Darcy S.	TI 6_4	Oct 15	4:00 PM	BR
Moura, Ricardo	TI 20_3	Oct 16	5:10 PM	BR
Muthukumarana, Saman	TI 3_3	Oct 15	9:55 AM	EL
Ng, Hon Keung Tony	TI 21_4	Oct 16	5:30 PM	EL
Nguyen, Christine and Huang, Mei Ling	TI 7_4	Oct 15	4:00 PM	EL
Nkurunziza, Sévérien	TI 18_3	Oct 16	3:40 PM	CAN/B
Nolde, Natalia	TI 10_1	Oct 16	9:15 AM	BR
Oh, Dong Hwan	TI 15_3	Oct 16	3:40 PM	NI
Oluyede, Broderick O.	TI 17_4	Oct 16	3:48 PM	EL
Otunuga, Michael	TI 22_2	Oct 16	4:50 PM	CAN/B
Paolella, Marc	TI 8_3	Oct 15	3:40 PM	CAN/B
Pararai, Mavis	TI 22_1	Oct 16	4:30 PM	CAN/B
Peng, Yingwei	TI 2_3	Oct 15	9:55 AM	BR
Pigeon, Mathieu	TI8_2	Oct 15	3:20 PM	CAN/B
Plante, Jean-François	TI 15_1	Oct 16	3:00 PM	NI
Prieto, Faustino and Sarabia, Jose Maria	TI 1_3	Oct 15	9:55 AM	NI
Provost, Serge	TI 8_4	Oct 15	4:00 PM	CAN/B
Raim, Andrew	TI 6_2	Oct 15	3:20 PM	BR
Ren, Jiandong	TI 8_1	Oct 15	3:00 PM	CAN/B
Richter, Wolf-Dieter	TI 10_4	Oct 16	10:15 AM	BR
Saez-Castillo, Antonio Jose and Conde-Sanchez, Antonio	TI 1_1	Oct 15	9:15 AM	NI
Samanthi, Ranadeera	TI 15_2	Oct 16	3:20 PM	NI
Sarabia, Jose Maria and Prieto, Faustino	TI 1_4	Oct 15	10:15 AM	NI
Sclove, Stanley	TI 7_2	Oct 15	3:20 PM	EL
Sellers, Kimberly	TI 6_1	Oct 15	3:00 PM	BR
Shahtahmassebi, Golnaz	TI 16_3	Oct 16	3:40 PM	BR
Sinha, Sanjoy	TI 4_2	Oct 15	9:35 AM	CAN/B
So, Hon Yiu	TI 21_3	Oct 16	5:10 PM	EL
Song, Peter	TI 13_3	Oct 16	11:30 AM	NI
Su, Steve	TI 5_1	Oct 15	3:00 PM	NI
Tegge, Allison N.	TI 11_1	Oct 16	9:15 AM	EL
Teodoro, M. Filomena	TI 20_2	Oct 16	4:50 PM	BR
Tsukahara, Hideatsu	TI 17_3	Oct 16	3:32 PM	EL
Vinogradov, Vladimir and Paris, Richard B.	TI 18_1	Oct 16	3:00 PM	CAN/B
Wang, Bin	TI 12_2	Oct 16	9:35 AM	CAN/B
Wang, Dongliang	TI 21_1	Oct 16	4:30 PM	EL
Wu, Changbao	TI 2_1	Oct 15	9:15 AM	BR
Wu, Ho-Hsiang	TI 11_2	Oct 16	9:35 AM	EL
Wu, Jiang/ Zitikis, Ricardas	TI 9_2	Oct 16	9:35 AM	NI

.

CMU CENTRAL MICHIGAN UNIVESITY	ICISDA 2016						
Xie, Yuying	TI 12_4	Oct 16	10:15 AM	CAN/B			
Xu, Xiaojian	TI 4_4	Oct 15	10:15 AM	CAN/B			
Yagi, Ayaka and Seo, Takashi	TI 20_1	Oct 16	4:30 PM	BR			
Yi, Grace Y.	TI 2_4	Oct 15	10:15 AM	BR			
Yu, Guan	TI 18_2	Oct 16	3:20 PM	CAN/B			

General-Invited Session: Topics and Session Chairs

Session Name: GI m_k (m_k = k^{th} speaker in mth session)

Room Abbreviation: NI – Niagara Room, BR - Brock Room, EL – Elizabeth Room, CAN/B – Canadian Room/B

Session	Торіс	Topic Session Chair			Room
GI 1	Modeling 1 - Life Time,	Pararai, Mavis	Oct 15	10:50 am -	NI
	Biostatistics			12:05 pm	
GI 2	High Dimension Data Analysis	Amezziane, Mohamed	Oct 15	10:50 am -	BR
				12:05pm	
GI 3	Bayesian 1 , Spatial	Samanthi, Madhuka	Oct 15	10:50 am -	EL
				12:05 pm	
GI 4	Other - Miscellaneous	Sepanski, Steve	Oct 15	10:50 am -	CAN/B
				12:05 pm	
GI 5	Generalized Distributions 1	Pararai, Mavis	Oct 15	4:30 pm -	NI
				5:45 pm	
GI 6	Inference -Estimation, Testing	Amezziane, Mohamed	Oct 15	4:30 pm -	BR
				5:45 pm	
GI 7	Modeling 2 -Estimation	Samanthi, Madhuka	Oct 15	4:30 pm -	EL
				5:45 pm	
GI 8	Reliability, Risk	Daniels, John	Oct 15	4:30 pm -	CAN/B
				5:45 pm	
GI 9	Bayesian 2: Estimation, Model	Cheng, Chin-I	Oct 16	10:50 am –	BR
				12:05 pm	
GI 10	Generalized Distributions 2	Cooray, K.	Oct 16	10:50 am –	EL
				12:05 pm	

General-Invited Session: Presenters (in Alphabetic Order)

Session Name: GI m_k - mth session, kth speaker

Room Abbreviation: NI – Niagara Room, BR - Brock Room, EL – Elizabeth Room, CAN/B – Canadian Room/B

Name	Session	Date	Start Time	Room
Abdelrazeq, Ibrahim	GI 4_4	Oct 15	11:35 AM	CAN/B
Aljarrah, Mohammad	GI 10_1	Oct 16	10:50 AM	EL
Alshkaki, Rafid S.	GI 10_2	Oct 16	11:05 AM	EL
Alzaghal, Ahmad	GI 10_3	Oct 16	11:20 AM	EL
Arowolo, Olatunji and Ayinde, Kayode	GI 7_5	Oct 15	5:30 PM	EL
Bakar, Shaiful Anuar Abu	GI 1_5	Oct 15	11:50 AM	NI
Bayramoglu, Konul Kavlak	GI 1_4	Oct 15	11:35 AM	NI
Bingham, Melissa	GI 4_2	Oct 15	11:05 AM	CAN/B
Boulieri, Areti	GI 3_1	Oct 15	10:50 AM	EL
Chacko, Manoj	GI 9_5	Oct 16	11:50 AM	BR
Daniels, John	GI 3_4	Oct 15	11:35 AM	EL

CMU STORA	201	6	Br	
Doray, Louis G.	GI 8_4	Oct 15	5:15 PM	CAN/B
El Ktaibi, Farid	GI 7_4	Oct 15	5:15 PM	EL
Faisal, Shahla	GI 2_4	Oct 15	11:35 AM	BR
Ferrari, Silvia L. P. and Fumes, Giovana	GI 5_2	Oct 15	4:45 PM	NI
Gleaton, James	GI 8_1	Oct 15	4:30 PM	CAN/B
Godbole, Anant	GI 10_5	Oct 16	11:50AM	EL
Hodge, Miriam	GI 5_1	Oct 15	4:30 PM	NI
Hoshino, Nobuaki	GI 4_3	Oct 15	11:20 AM	CAN/B
Hristopulos, Dionissios T.	GI 5_3	Oct 15	5:00 PM	NI
Huang, Hsin-Hsiung	GI 3_2	Oct 15	11:05 AM	EL
Jiang, Jiancheng	GI 6_4	Oct 15	5:15 PM	BR
Jureckova, Jana	GI 5_5	Oct 15	5:30 PM	NI
Karlis, Dimitris	GI 8_2	Oct 15	4:45 PM	CAN/B
Lewin, Alex	GI 6_1	Oct 15	4:30 PM	BR
Liu, Sifan and Xie, Min-ge	GI 7_1	Oct 15	4:30 PM	EL
Mandrekar, Jay	GI 1_3	Oct 15	11:20 AM	NI
Maruyama, Yuzo	GI 9_4	Oct 16	11:35 AM	BR
Matheson , Matthew	GI 1_1	Oct 15	10:50 AM	NI
Mi, Jie	GI 4_1	Oct 15	10:50 AM	CAN/B
Minkova, Leda	GI 8_3	Oct 15	5:00 PM	CAN/B
Nolan, John	GI 10_4	Oct 16	11:35 AM	EL
Ozturk, Omer	GI 4_5	Oct 15	11:50 AM	CAN/B
Paul, Rajib	GI 3_5	Oct 15	11:50 AM	EL
Peer, Bilal Ahmad	GI 9_2	Oct 16	11:05 AM	BR
Pérez-Casany, Marta	GI 5_4	Oct 15	5:15 PM	NI
Potgieter, Cornelis	GI 6_3	Oct 15	5:00 PM	BR
Ross, Sheldon	GI 9_1	Oct 16	10:50 AM	BR
Ruth, David M.	GI 2_2	Oct 15	11:05 AM	BR
Schick, Anton	GI 7_2	Oct 15	4:45 PM	EL
Song, Xinyuan	GI 1_2	Oct 15	11:05 AM	NI
Stehlik, Milan	GI 6_5	Oct 15	5:30 PM	BR
Sun, Ying	GI 3_3	Oct 15	11:20 AM	EL
Sylvan, Dana	GI2_5	Oct 15	11:50 AM	BR
Thomas, Hoben and Hettmansperger, T.P	GI 6_2	Oct 15	4:45 PM	BR
Wang, Min and Li, Shengnan	GI 9_3	Oct 16	11:20 AM	BR
Wang, Qiying	GI 7_3	Oct 15	5:00 PM	EL
Yu, Chong Ho	GI 2_1	Oct 15	10:50 AM	BR
Yu, Jihnhee; Yang, Luge; Vexler, Albert and Hutson, Alan	GI 8_5	Oct 15	5:30 PM	CAN/B
Zahid, Faisal Maqbool and Heumann, Christian	GI 2_3	Oct 15	11:20 AM	BR

Poster Presentations (in Alphabetic order)

Set Up Time: By 3:00 pm, October 15			
Presentation Time: 5:45 pm - 6:30 pm, October 15 Room: Canadian/A			
Name	e Title		
Aldeni, Mahmoud	Families of distributions arising from the quantile of generalized lambda distribution		

	COSDA-2016 Brock				
Arapis, Anastasios N. Joint distribution of k-tuple statistics in zero-one sequences					
Chaba, Linda and Omolo, Bernard	Using copulas to select prognostic genes in melanoma patients				
Chan, Stephen	Extreme value analysis of electricity demand in the UK				
Cordero, Osnamir Elias Bru; Jaramillo, Mario César and Canal, Sergio Yáñez	Random Number Generation for a Survival Bivariate Weibull Distribution				
De Silva, Kushani	Bayesian Approach to Profile Gradient Estimation using Exponential Cubic Splines				
Darkenbayeva, Gulsim	Convergence of some quadratic forms used in regression analysis				
Hamed, Duha	T-Pareto family of distributions: Properties and Applications				
Kang, Kai	Bayesian semiparametric mixed hidden Markov models				
Krutto, Annika	Estimation in Univariate Stable Laws				
Mdziniso, Nonhle Channon	Odd Pareto Families of Distributions for Modeling Loss Payment Data				
Nitithumbundit, Thanakorn	Maximum leave-one-out likelihood estimation for location parameter of unbounded densities				
Odhiambo, Collins Ojwang	A Smooth Test of Goodness-of-fit for the Weibull Distribution: An Application to an HIV Retention data				
Selvitella, Alessandro	The Simpson's Paradox in Quantum Mechanics				
Yan, Hongxuan	Modeling Financial Time Series of Count Data with Long Memory				
Zhang, Yuanyuan	New bivariate wrapped distributions				

Scientific Program (Based on Time)

October 14, 2016 (Friday)					
3:00 pm	– 7:00 p	m C	Conference Check-in	at Brock Main Lobby	
			October 15, 20)16 (Saturday)	
Type: REG: R	egistratio	on, EXHI ·	Exhibition, KEY- Keynd	ote, PLE - Plenary, TI -Topic Invited, GI - General	
Invited,					
SP - St	udent Po	ster.			
Room: NI - N	liagara, B	R - Brock	, BR/M: Brock Main Lo	bby, EL - Elizabeth,	
CAN/	A - Canac	lian/A, C	AN/B - Canadian/B		
			Organizer (O) /		
Time	Room	Туре	Chair (C) /Speaker	Title	
7:00 am -					
5:00 pm	BR/M	REG	Registration at Brock	k Main Lobby	
8:00 am -					
5:00 pm	BR/M	EXHI	Springer Publishing	Exhibition at Brock Main Lobby	
7:00 am -					
7:50 am	NI	Breakfa	ist		
7:50 am –					
8:00 am	NI		Ejaz Ahmed	Opening Remark	
8:00 am -					
9:00 am	NI	KEY	Felix Famoye (C)	Welcome	
8:00 AM			Peter McCullagh	Statistical models for survival processes	
9:00 am -					
9:15 am		Interm	Intermission		
9:15 am -			Jose Maria Sarabia Applications of Statistical Distributions in		
10:35 am	NI	TI 1	(O,C)	Business, Management and Economics	

CENTRAL MICHIGAN UNIVERSITY		7 (COSDO	4-2076 Brock University Process
9:15 AM			Antonio Jose Saez- Castillo	Regression models based on extended Poisson distributions in R
			Emilio Gomez-	Computing Credibility Bonus-Malus Premiums
9:35 AM			Deniz	Using a Bivariate Discrete Distribution
				Family of generalized power law (GPL)
9:55 AM			Faustino Prieto	distributions: Properties and Applications
				A Hierarchy of Multivariate Pareto Distributions
10:15 AM			Jose Maria Sarabia	with Applications in Risk Analysis
9:15 am -				Some Recent Issues and Methods in Statistics and
10:35 am	BR	TI 2	Grace Yi (O,C)	Biostatistics
				Distribution Theory in Empirical Likelihood for
9:15 AM			Changbao Wu	Complex Survey Data
				Improving Performance of Support Vector
9:35 AM			Wenging He	Machine Classifiers with Data Adaptive Kernel
				Prediction accuracy for cure probability in cure
9:55 AM			Yingwei Peng	models
				Analysis of High-Dimensional Correlated Data in
				the Presence of Missing Observations and
10:15 AM			Grace Y. Yi	Measurement Error
9:15 am -			Michael Evans	
10:35 am	EL	TI 3	(O,C)	Relative Belief Inferences
				Measuring Statistical Evidence Using Relative
9:15 AM			Michael Evans	Belief
			Gun Ho Jang and	
9:35 AM			Lincoln Stein	Relative Belief based Signal Segmentation
			Saman	Non-inferiority Hypothesis Testing in Two-arm
9:55 AM			Muthukumarana	Trials using Relative Belief Ratios
10:15 AM			Luai Al-Labadi	Prior-based model checking
9:15 am -				Recent developments in designs and analysis of
10:35 am	CAN/B	TI 4	Xiaojian Xu (O,C)	statistical experiments
				Optimal designs for minimizing correlations among
9:15 AM			Saumen Mandal	parameter estimators in a linear model
				Joint modeling of longitudinal and survival data
9:35 AM			Sanjoy Sinha	with a covariate subject to limit of detection
				Controlling IER and EER in replicated regular two-
9:55 AM			Pengfei Li	level factorial experiments
				Optimal designs for regression when
10:15 AM			Xiaojian Xu	measurement error is present
10:35 am -				
10:50 am	NI	Refresh	nment	
10:50 am -				
12:05 pm	NI	GI 1	Mavis Pararai (C)	Modeling 1 - Life Time, Biostatistics
			Matthew	The Shape of the Hazard Function: The
10:50 AM			Matheson	Generalized Gamma and Its Competitors
				Analysis of proportional mean residual life model
11:05 AM			Xinyuan Song	with latent variables
				Statistical approach for the development,
				prediction, and validation of a simple risk score:
11:20 AM			Jay Mandrekar	application to a neurocritical care study.
			Konul Bayramoglu	The mean wasted life time of a component of
11:35 AM			Kavlak	system

CENTRAL MICHIGAN UNIVERSITY		I	TOSDA	-2016 Brock
			Shaiful Anuar Abu	Actuarial loss modeling with the composite models
11:50 AM			Bakar	and its computer implementation
10:50 am -			Mohamed	
12:20 pm	BR	GI 2	Amezziane (C)	High Dimension Data Analysis
10:50AM				Pattern recognition: The role of data visualization
			Chong Ho Yu	and data mining in statistics
11:05 AM				An approach to the multivariate two-sample
			David M. Buth	problem using classification and regression trees
11·20 AM			Eaisal Maghool	
11.20 AW			Zahid and Christian	
			Heumann	Multiple Imputation using Regularization
11:35 AM				Improved Nearest Neighbors Imputation for High-
			Shahla Faisal	Dimensional Longitudinal Data
11:50 AM				Exploration and visualization of space-time data
			Dana Sylvan	with complex structures
10:50 am -			Madhuka	
12:05 pm	EL	GI 3	Samanthi (C)	Bayesian 1 - Biostatistics
				A Bayesian detection model for chronic disease
				surveillance: application to COPD hospitalisation
10:50AM			Areti Boulieri	data
				New Mixed Gaussian Affine-Invariant Bayesian
11:05 AM			Hsin-Hsiung Huang	Clustering Method
11.20 414			View Court	A Stochastic Space-time Model for Intermittent
11:20 AM			Ying Sun	Precipitation Occurrences
11:35 AM			John Daniels	Variogram Fitting Based on the Wilcoxon Norm
11.50 414			Paiib Paul	Real Time Estimation of ILI (Influenza Like
10.50 am -				
12:20 pm	CAN/B	GI 4	Steve Sepanski (C)	Other - Miscellaneous
10:50 AM			Jie Mi	Instant System Availability
				Quantifying Spread in 3-D Rotation Data:
				Comparison of Nonparametric and Parametric
11:05 AM			Melissa Bingham	Techniques
				On the marginals of a random partitioning
11:20 AM			Nobuaki Hoshino	distribution
				Goodness-of-Fit Test: Levy Driven Continuous
11:35 AM			Ibrahim Abdelrazeq	ARMA Model
			Omor O-turl	Katio estimators based on ranked set sampling in
12:05 mm			Omer Ozturk	survey sampling
1.15 pm -	NI	Lunch		
1:15 pm -		Lunch		
2:45 pm	NI	PLE	Chin-I Cheng (C)	
				Tukey g-and-h random fields and max-stable
1:15 PM			Marc G. Genton	processes
1:45 PM			Yi Li	Classification with Ultrahigh-Dimensional Features
2:15 PM			John Stufken	Optimal design and subdata selection for big data
2:45 pm -				- -
3:00 pm	NI	Refresh	iment	

CENTRAL MICHIGAN UNIVERSITY		7 (COSDO	4-2076 Brock
3:00 pm -	NI	ті 5	Ayman Alzaatreh	Generalized distributions and its application
4.20 pm				Transformation and Family of Generalised Lambda
3:00 PM			Steve Su	Distributions
			Gholamhossein	Characterizations of Probability Distribution Via
3:20 PM			Hamedani	the Concept of Sub-Independence
3:40 PM			Indranil Ghosh	Some alternative bivariate Kumaraswamy models
				Parameter estimation for the log-logistic
4:00 PM			Ayman Alzaatreh	distribution based on order statistics
2.00			Kinchenky Cellere	Don't Count on Poisson! Introducing the Conway-
3:00 pm -	BR	тіб		maxwell-Poisson distribution for statistical
4.20 pm	DK	110	(0,0)	Introducing the Conway-Maxwell-Poisson
3:00 PM			Kimberly Sellers	distribution
				A flexible zero-inflated model to address data
3:20 PM			Andrew Raim	dispersion
				Marginal Regression Models for Clustered Count
			Hyoyoung Choo-	Data Based on Zero-Inflated Conway-Maxwell-
3:40 PM			Wosoba	Poisson Distribution with Applications
				Bivariate Conway-Maxwell-Poisson Distribution:
4:00 PM			Darcy S. Morris	Formulation, Properties, and Inference
3:00 pm -	-	TI 7	Mei-Ling Huang	Extreme Value Distributions and Models
4:20 pm	EL			A Renewal Process for Extremes
3:00 PIVI			Percy Brill	A Renewal Process for Extremes
3:20 PIVI			Stanley Sciove	Extreme values or Mixture Distribution?
3:40 PM			Nyron Hiynka	Comments on the Gumbel Distribution
4:00 PIVI			Christine Nguyen	On High Quantile Regression
3:00 pm - 4:20nm	CAN/B	тія	(O C)	Approximating and Estimating Density Functions
	<i>c,</i> , <i>b</i>			Moment-Based Density Approximations for
3:00 PM			Jiandong Ren	Aggregate Losses
			0	Composite (mixed) models for individual loss
3:20 PM			Mathieu Pigeon	reserving
3:40 PM			Marc Paolella	Stable Paretian Distribution Testing
				Differentiated Logdensity Estimates and
4:00 PM			Serge Provost	Approximants as Rational Functions
4:20 pm -				
4:30 pm	NI	Interm	ission	
4:30 pm -	NI	GIS	Mavis Pararai (C)	Generalized Distributions 1
5.45 pm				Comparison of liquefaction data: An application of
				a logistic normal distribution in the simplex sample
4:30 PM			Miriam Hodge	space
				Box-Cox symmetric distributions and applications
4:45 PM			Silvia L. P. Ferrari	to nutritional data
			Dionissios T.	A probability distribution function for finite-size
5:00 PM		ļ	Hristopulos	systems with renormalized weakest-link behavior
			Marta Pérez-	
5:15 PM		<u> </u>	Casany	Random-Stopped Extreme distributions
5:30 PM			Jana Jureckova	Specitying the tails of a distribution

CENTRAL MICHIGAN UNIVERSITY		I	DSDA	4-2076 Breck
4:30 pm -			Mohamed	
5:45 pm	BR	GI 6	Amezziane (C)	Inference -Estimation, Testing
				Fuzzy multiple testing procedures for discrete test
4:30 PM			Alex Lewin	statistics
			Hoben Thomas	
			and T.P.	Test Scores, HRX, and Distribution Function Tail
4:45 PM			Hettmansperger	Ratios
				Goodness-of-fit testing for generalized skew-
5:00 PM			Cornelis Potgieter	symmetric distributions
5:15 PM			Jiancheng Jiang	A new diversity estimator
				Exact distributions of LR tests and their
5:30 PM			Milan Stehlik,	applications
4:30 pm -			Madhuka	
5:45 pm	EL	GI 7	Samanthi (C)	Modeling 2 -Estimation
			Sifan Liu and Min-	Exact Inference on Meta-Analysis with Generalized
4:30 PM			ge Xie	Fixed-Effects and Random-Effects Models
				Estimation of the error distribution function in a
4:45 PM			Anton Schick	varying coefficient regression model
			.	Limit theorems for nonlinear cointegrating
5:00 PM			Qiying Wang	regression
				Change point detection for stationary linear
5:15 PM			Farid El Ktaibi	models and MBB applications
5 00 014			Olatunji Arowolo	Parameter estimation techniques of simultaneous
5:30 PM			and Kayode Ayinde	equation model with multicollinearity problem
4:30 pm -			John Doniels (C)	Poliobility Bick
5.45 pm	CAN/ D	618	John Dameis (C)	Characteristics of Congralized Log Logistic Eamilies
				of Lifetime Distributions and
4.30 PM			James Gleaton	Asymptotic Properties of Parameter Estimators
4.501111			Junes Gleaton	On mixtures of multiple discrete distributions with
4:45 PM			Dimitris Karlis	application
5.00 PM			Leda Minkova	Distributions of order K in risk models
5.001101				The Double Pareto Lognormal Distribution with
				Covariates and its Applications in Finance and
5:15 PM			Louis G. Dorav	Actuarial Science
			Jihnhee Yu. Luge	
			Yang, Albert Vexler	Variance Estimation of the Nonparametric
5:30 PM			and Alan D. Hutson	Estimator of the Partial Area under the ROC Curve
5:45 pm -				
6:30 pm	CAN/A	SP	Student Poster prese	entations
6:30 pm-				
7:20 pm	NI	Dinner		
7:20 pm –				
7:30 pm	NI		Nancy Reid	Welcome Remarks from CANSSI
7:30 pm -			Jungsywan	
8:30 pm	NI	KEY	Sepanski (C)	
				From Bacon and Eggs to Fréchet Shock-
7:30 PM			Mei-Ling Ting Lee	Degradation Models

October 16, 2016 (Sunday)

Type: REG: Registration, EXHI - Exhibition, KEY- Keynote, PLE - Plenary, TI -Topic Invited, GI - General Invited,

SP - Student Poster.

Room: NI - Niagara, BR - Brock, BR/M: Brock Main Lobby, EL - Elizabeth,

CAN/A - Canadian/A , CAN/B - Canadian/B				
			Organizer (O)/	
Time	Room	Туре	Chair (C) /Speaker	Title
7:00 am -				
5:00 pm	BR/M	REG	Registration at Broc	k Main Lobby
8:00 am -				
5:00 pm	BR/M	EXHI	Springer Publishing	Exhibition at Brock Main Lobby
7:00 am -				i de la companya de l
8:00 am	NI	Breakfas	st	
8:00 am -				
9:00 am	NI	KEY	Ejaz Ahmed (C)	
				Ensemble subspace methods for high dimensional
8:00 AM			Kjell Doksum	data
9:00 am -				
9:15 am		Intermis	sion	
9:15 am -			Edward Furman	Dependence modelling with applications in
10:35 am	NI	TI 9	(O), Cossette (C)	insurance and finance
				Archimedean copulas: Aggregation and capital
9:15 AM			Hélène Cossette	allocation
				Background risk models, two-period economies,
			Jiang Wu and	and optimal strategies that minimize financial
9:35 AM			Ricardas Zitikis	losses
				Reciprocal Reinsurance Treaties Under an Optimal
9:55 AM			Mélina Mailhot	and Fair Joint Survival Probability
			Petar Jevtić,	
10:15 AM			Thomas R. Hurd	The joint mortality of couples in continuous time
9:15 am -			Wolf-Dieter	
10:35 am	BR	TI 10	Richter (O,C)	Multivariate distributions
				Multivariate light-tailed distributions: from the
				asymptotic shape of sample clouds to properties
9:15 AM			Natalia Nolde	of multivariate extremes.
				A unified approach to some multivariate skew
9:35 AM			Olcay Arslan	distributions
				On moment indeterminacy of the generalized
9:55 AM			Christian Kleiber	variance
				Statistical reasoning on scaling parameters in
			Wolf-Dieter	dependent p-generalized elliptically contoured
10:15 AM			Richter	distributions
9:15 am -			Marco A.R.	
10:35 am	EL	TI 11	Ferreira (O,C)	Bayesian analysis for highly structured processes
				Bayesian analysis for multi-subject time course
9:15 AM			Allison N. Tegge	RNA-seq experiments
				Mixtures of Nonlocal Priors for Variable Selection
9:35 AM			Ho-Hsiang Wu	in Generalized Linear Models
				Objective Bayesian Analysis for Gaussian Improper
9:55 AM			Matthew J. Keefe	CAR Models

CENTRAL MICHIGAN UNIVERSITY		90	DSDA	7-2076 Breck
				Multiscale Spatiotemporal Modeling for Predicting
10:15 AM			Andrew Hoegh	Civil Unrest
9:15 am -			Xiaoli Gao (O),	
10:35 am	CAN/B	TI 12	Xie (C)	Recent development on Complex Data Analysis
				Robust estimation for sparse Gaussian graphical
9:15 AM			Kei Hirose	model
				Normalizing next-generation sequencing data via
9:35 AM			Bin Wang	Density Estimation and Binning
0.55.444				Variable selection for partially linear models via
9:55 AM			Yixin Fang	learning gradients
				Joint Estimation of Multiple Dependent Gaussian
10.15 444			Vulving Vio	Graphical Models with Applications to Model
10.13 Alvi			Tuying Ne	Genomics
10:50 am	NI	Refresh	ment	
10:50 am -			Victor De Oliveira	
12:10 pm	NI	TI 13	(O,C)	Copula Modeling of Discrete Dependent Data
				Hierarchical Copula Regression Models for Areal
10:50 AM			John Hughes	Data
11:10 AM			Lisa Madsen	Simulating Dependent Count Data
				Copula Random Field with Application to
11:30 AM			Peter Song	Longitudinal Neuroimaging Data Analysis
				On the Correlation Structure of Gaussian Copula
11:50 AM			Victor De Oliveira	Models for Geostatistical Count Data
10:50 am -				
12:05 pm	BR	GI 9	Chin-I Cheng (C)	Bayesian 2: Estimation
10:50 AM			Sheldon Ross	Friendship Paradox and Friendship Network Model
				Bayesian analysis of misclassified generalized
11.05 444			De en Dilei Alemend	Power Series distributions under different loss
11:05 AIVI			Peer Bilai Anmad	Tunctions
11.20 ΔΜ			Shongnan Li	distribution using objective priors
11.20 AW				Harmonic Bayesian prediction under alpha-
11·35 AM			Yuzo Maruvama	divergence
11.557(10)				Bayesian density estimation using ranked set
11:50 AM			Manoi Chacko	sample when ranking is not perfect
10:50 am -			,	
12:05 pm	EL	GI 10	K. Cooray (C)	Generalized Distributions 2
			Mohammad	
10:50 AM			Aljarrah	Exponential-Normal distribution
				An Extension to the Zero-Inflated Generalized
11:05 AM			Rafid S. Alshkaki	Power Series Distributions
				The Exponentiated Gamma-Pareto Distribution,
11:20 AM			Ahmad Alzaghal	Properties and Application
11:35 AM			John Nolan	Classes of generalized spherical distributions
				Statistical Distributions in Combinatorics: Moving
11:50 AM			Anant Godbole	from Intractability to Tractability
10:50 am - 12:10 pm	CAN/B	TI 14	Milan Stehlik (O,C)	Statistics and Modelling
				Two Kinds of Stochastic Dependencies Bi-variate
10:50 AM			Lidia Filus	Distributions; Part 1

CMU CENTRAL MICHIGAN UNIVERSITY		I	DSDA	4-2076 Brock
11:10 AM			Jerzy Filus	Two Kinds of Stochastic Dependencies Bi-variate
11:30 AM			Naovuki Ishimura	Evolution of copulas and its applications
11.507411			Christina C	
11:50 AM			Christara	PDF option pricing with variable correlations
12:10 pm -			onnotara	
1:15 pm	NI	Lunch		
1:15 pm -				
2:45 pm	NI	PLE	John Daniels (C)	
1:15 PM			Gwo Dong Lin	Recent Developments on the Moment Problem
			Anand	
1:45 PM			Vidyashankar	Implicit Networks in High Dimensional Problems
				Distributional methods have changed statistical
2:15 PM			Don Fraser	inference
2:45 pm -				
3:00 pm	NI	Refresh	ment	
3:00 pm -			Kahadawala	Copula Theory and Applications to Insurance and
4:20 pm	NI	TI 15	Cooray (O,C)	Finance
			Jean-François	
3:00 PM			Plante	Rank Correlation under Categorical Confounding
			Ranadeera	Comparing the Riskiness of Dependent Insurance
3:20 PM			Samanthi	Portfolios
				Time-Varying Systemic Risk: Evidence from a
3:40 PM			Dong Hwan Oh	Dynamic Copula Model of CDS Spreads
				Strictly Archimedean Copula with Complete
			Kahadawala	Association for Multivariate Dependence Based on
4:00 PM			Cooray	the Clayton Family
3:00 pm -		-		Bayesian approaches on models and distributions
4:20 pm	вк	1116	Chin-I Cheng (O,C)	estimation
2.00 DM			lienshue Lle	Bayesian Reliability Assessment of Facility-Level
3:00 PIVI			Jiangnua He	A pate on Dirichlet Process based cominarametric
2.20 014			Arnita Chattorica	A note on Dirichlet Process based semiparametric
5.20 PIVI			Arpita Chatterjee	Bayesian Estimation of Change Doint problems
			Golpaz	using Conditionally Specified Prior Distributions
3.40 PM			Shahtahmassehi	with Applications
3.401101			Shantannassebi	Bayesian Estimators of the Odd Weihull
4:00 PM			Chin-I Cheng	distribution with censored data
3:00 pm -			Broderick O.	Compounding and Copulas: Generalized and
4:20 pm	EL	TI 17	Oluvede (O,C)	Extended Distributions
				Bivariate Truncated Type I Generalized Logistic
3:00 PM			Lamya A. Baharith	Distribution
				Directional Dependence via Copula Stochastic
3:16 PM			Jong-Min Kim	Volatility Model.
			Hideatsu	
3:32 PM			Tsukahara	The empirical beta copula
			Broderick O.	The Burr XII Weibull Power Series Distribution:
3:48 PM			Oluyede	Theory and Applications
			Boikanyo	Dagum Power Series Class of Distributions with
4:04 PM			Makubate	Applications to Lifetime Data

CENTRAL MICHIGAN UNIVERSITY	TOTOSDA-2016 Brock			
3:00 pm -			Mohamed	
4:20 pm	CAN/B	TI 18	Amezziane (O,C)	Modeling complex data
			Vladimir	
			Vinogradov and	
3:00 PM			Paris, Richard B.	Poisson-Tweedie mixtures: a case study
				Sparse Regression for Block-missing Multi-
3:20 PM			Guan Yu	modality Data
			Sévérien	A class of restricted estimators in multivariate
3:40 PM			Nkurunziza	measurement error regression model
				Thresholding Least Squares Inference in High
4:00 PM			Mihai Giurcanu	Dimensional Regression Models
4:20 pm -				
4:30 pm	NI	Intermis	sion	1
4:30 pm -			Paul McNicholas	Mixtures of Non-Gaussian Distributions with
5:50 pm	NI	TI 19	(O,C)	Applications in Clustering
				Mixtures of Dirichlet-Multinomial Regression
4:30 PM			Sanjeena Dang	Models for Microbiome Data
			Michael	Clustering Clickstream Data Using a Mixture of
4:50 PM			Gallaugher	Continuous Time Markov Models
				Parsimonious skew power-exponential mixture
5:10 PM			Utkarsh Dang	models
				Mixture of Coalesced Generalized Hyperbolic
5:30 PM			Paul McNicholas	Distributions
4:30 pm -			Carlos A. Coelho	Likelihood-based Inference: Methods and
5:50 pm	BR	TI 20	(O,C)	Applications
4.20 514			Ayaka Yagi and	The null distribution of the LRT statistic for mean
4:30 PIVI			Takashi Seo	Vectors with monotone missing data
4.50 014			M. Filomena	Wodeling the time between failures using
4:50 PIVI			Teodoro	likelihood ratio tests
				Likelinood-based exact inference for Posterior and
5.10 DM			Picardo Moura	Fixed-Posterior Predictive Sampling synthetic data
5.10 Pivi				Likelihood ratio test for the equality of mean
				vectors when the joint covariance matrix is block-
5.30 PM			Carlos A. Coelho	circulant or block compound symmetric
4:30 pm -			Hon Keung Tony	Statistical Methods for Analysis of Industrial and
5:50 pm	EL	TI 21	Ng (O.C)	Medical Data
				Penalized Empirical Likelihood for the Cox
4:30 PM			Dongliang Wang	Regression Model
				A Graphical Test for Testing Random Effects in
4:50 PM			Kalanka Jayalath	Common Statistical Designs
			,	The EM algorithm for One-shot Device Testing
				with Competing Risk under Different Lifetimes
5:10 PM			Hon Yiu So	Distributions
			Hon Keung Tony	Statistical Inference for Component Distribution
5:30 PM			Ng	from System Lifetime Data
4:30 pm -			Alfred Akinsete	Construction of new statistical distributions and
5:50 pm	CAN/B	TI 22	(O,C)	statistical data modeling
4:30 PM			Mavis Pararai	A New Lifetime Distribution With Applications
				Distribution Models of Energy Commodity Spot
1.20 DM			Michael Otunuga	Price Processes

CMU CENTRAL MICHIGAN UNIVERSITY		90	DSDA	F 2076 Breck
5:10 PM			Raid Al-Aqtash	Gumbel-Burr XII {logistic} distribution
				Robustness of Multiple Comparison Methods for
				One-way and Two-way ANOVA with Repeated
5:30 PM			Avishek Mallick	Measurements
				Raffle Draw. Many door prices will be given
6:00 pm -				away, including over 50 advanced level books, a
7:00 pm	NI	Closing	Carl Lee	tablet and others.

Abstracts – Topic-Invited Speakers (Alphabetically Ordered)

Session Name: TI m_k (m_k = k^{th} speaker in mth session)

It is assumed the first author is the presenter, unless an asterisk (*) is used to indicate the presenter. The affiliation listed is the presenter's affiliation only.

TI 22_3	Al-Aqtash, Raid	Marshall University, USA	
Title	Gumbel-Burr XII {logistic} distribution		
In this proje	ct, a member of the Gumbel-	X family of distributions is defined. Many properties will be	
presented in	ncluding shapes, moments, sk	ewness, kurtosis, parameter estimation. The distribution will be	
used to fit r	eal life data and compare the	performance with other used probability distributions.	
TI 3_4	Al-Labadi, Luai	University of Toronto, Canada	
Title	Prior-based model checking		
Model chec	king procedures are considered	ed based on the use of the Dirichlet process and relative belief.	
This combin	ation is seen to lead to some	unique advantages for this problem.	
TI 5_4	Alzaatreh, Ayman	Nazarbayev University, Kazakhstan	
Title	Parameter estimation for th	e log-logistic distribution based on order statistics	
In this talk, t	the moments and product mo	oments of the order statistics in a sample of size n drawn from	
the log-logis	tics distribution are discussed	d. We provide more compact forms for the mean, variance and	
covariance o	of order statistics. Parameter	estimation for the log-logistic distribution based on order	
statistics is s	studied. In particular, best line	ear unbiased estimators (BLUEs) for the location and scale	
parameters	for the log-logistic distributio	n with known shape parameter are studied. Hill estimator is	
proposed for	r estimating the shape param	neter.	
TI 10_2	Arslan, Olcay	Ankara University, Republic of Turkey	
Title	A unified approach to some multivariate skew distributions		
The main ob	jective of the present work is	s to introduce a unified class of skew and heavy-tailed	
distribution	s. We construct the new class	by defining the variance-mean mixture of a skew normal	
distributed	random variable with a positi	ve scalar-valued random variable independent of the skew	
normal dist	ibuted random variable. The	new class can be regarded as an extension of the following	
classes: the	normal variance mixture dist	ributions, the variance mixture of the skew normal distribution	
and the nor	mal variance–mean mixture c	listributions. An explicit expression for the density function of	
the new clas	ss is given and some of its dist	tributional properties are examined. We give a simulation	
algorithm to	generate random variates fr	om the new class and propose an EM algorithm for maximum	
likelihood estimation of its parameters.			
TI 17_1	Baharith, Lamya A.	King Abdulaziz University, Saudi Arabia	
Title	Bivariate Truncated Type I G	eneralized Logistic Distribution	
Truncated t	ype I generalized logistic distr	ibution has been used in variety of applications. In this article,	
new bivaria	new bivariate truncated type I generalized logistic distribution based on different types of copula		
functions is	functions is introduced. A study of some properties is illustrated. Different methods of estimation are		

CMU CUTULE TILL TCDSDA 2016 Brock Universit					
TI 20_4 Coelho, Carlos A. Universidade Nova de Lisboa, Portugal	HAIISIIGS				
Title Likelihood ratio test for the equality of mean vectors when the joint covariance matrix	is				
block-circulant or block compound symmetric					
The test developed and presented may be seen not only as a generalization of the common test of	The test developed and presented may be seen not only as a generalization of the common test of				
equality of mean vectors, under the assumption of independence of the corresponding random vec	tors				
or of independence of the samples, as well as a generalization of the tests for equality of means unc	ler				
the assumptions of a circulant or compound symmetric covariance matrix. Since the exact p.d.f. and	c.d.f.				
of this likelihood ratio statistic do not have tractable expressions, near-exact distributions are devel	oped,				
which enable the easy obtainment of sharp quantiles and p-values, and as such the practical					
implementation of these tests.					
TI 15_4 Cooray, Kahadawala Central Michigan University, USA					
TitleStrictly Archimedean Copula with Complete Association for Multivariate Dependence Eon the Clayton Family	ased				
The Clayton copula is one of the most discussed Archimedean copulas for dependency measuremer	it.				
However, the major drawback is that when it accounts for negative dependence, the copula become	es				
nonstrict and its support depends on the parameter. To address this issue, this talk introduces a new	v				
two-parameter family of strict Archimedean copula to measure exchangeable multivariate depende	nce.				
Closed-form formulas for the complete monotonicity and the d-monotonicity parameter region of t	he				
generator, copula distribution function, and the Kendall's distribution function are derived. Simulati	on				
studies are conducted to assess the performance of the ml estimators of the d-variate copula under	•				
known margins.					
TI 9_1 Cossette, Hélène; Itre Mtalai; Laval University, Canada					
Etienne Marceau and Déry Veilleux					
Title Archimedean copulas: Aggregation and capital allocation					
Risk aggregation evaluates the distribution of the sum of n random variables which represent individual					
risks. Researchers in insurance and finance have investigated the aggregation of dependent risks to					
determine an adequate level of capital to offset the global risk S=X ₁ ++ Xn of a portfolio of n risks w	ith				
known joint distribution. Risk measures, such as the VaR and TVaR, can be used to calculate the					
minimum capital requirement associated to S and the amount of capital allocated for each risk with	in the				
portfolio. We consider a portfolio of dependent risks represented by a vector of positive random					
variables whose joint distribution function is defined by a copula C and its margins F1,, Fn. We ass	sume				
that the copula C is either an Archimedean copula or a nested Archimedean copula. Our objective is	t0				
Archimedeen conclusion for computation of the distribution of S which relies on the fact the	alan				
Archimedean copula can be represented as a common mixture with a positive mixing variable. The					
results to posted Archimodoan copulas and propose a different approach permitting to get around					
contain constraints of these conulas					
TI 19, 1 Dang, Sanjaana					
Title Mixtures of Dirichlet Multinemial Degression Models for Misrohiama Data					
The human sub mixtures of Dirichlet-Wultinonnial Regression Wooders for Wilcrobiome Data					
The numan gut microbiome is a source of great genetic and metabolic diversity. Microbiome sample	25				
which share similar blota compositions are known as enterotypes. Exploring the relationship between					
biological/environmental covariates and the taxonomic composition of the gut microbial community can					
investigate this relationship, however these models did not account for any latent group structure.					
a finite mixture of Dirichlet-multinomial regression models is proposed and illustrated. These models	ι ει ε , ς				
allow for accounting for the enterotype structure and allow for a probabilistic investigation of the	5				
relationship between bacterial abundance and biological/environmental covariates within each infe	rred				
enterotype. Furthermore, a generalization of these models is also proposed that can incorporate th					
concomitant effect of the covariates on the resulting mixing proportions	-				
TI 19 3 Dang, Utkarsh Binghamton University – SUNY, USA					

A family of parsimonious mixtures of multivariate power exponential distributions is presented. The multivariate power exponential distribution is a flexible elliptical alternative to the Gaussian and Student t-distributions, allowing for dealing with both varying tail-weight (light or heavy) and peakedness of data. For particular values of the shape parameter, special and limiting cases of this distribution include the double-exponential, Gaussian, and the uniform distributions. Furthermore, an extension of these models is presented that can also model asymmetric data. Computational and inference challenges will be discussed. Lastly, the utility of the proposed models is illustrated using both toy and benchmark data.

TI 13_4	De Oliveira, Victor	The University of Texas at San Antonio, USA		
Title	On the Correlation Structure of Gaus	ssian Copula Models for Geostatistical Count Data		
We describe	e a class of random field models for ge	eostatistical count data based on Gaussian copulas.		
Unlike hiera	rchical Poisson models often used to	describe this type of data, Gaussian copula models		
allow a mor	e direct modelling of the marginal dis	tributions and association structure of the count data.		
We study in	detail the correlation structure of the	ese random fields when the family of marginal		
distribution	s is either negative binomial or zero-ir	nflated Poisson; these represent two types of		
overdispers	ion often encountered in geostatistica	al count data. We also contrast the correlation structure		
of one of th	ese Gaussian copula models with that	of a hierarchical Poisson model having the same family		
of marginal distributions, and show that the former is more flexible than the latter in terms of range of				
feasible cor	feasible correlation, sensitivity to the mean function and modelling of isotropy. An exploratory analysis			
of a dataset of Japanese beetle larvae counts illustrate some of the findings. All of these investigations				
show that Gaussian copula models are useful alternatives to hierarchical Poisson models, specially for				
geostatistica	al count data that display substantial o	correlation and small overdispersion.		

TI 3_1	Evans, Michael	University of Toronto, Canada
Title	Measuring Statistical Evidence Using	Relative Belief

A fundamental concern of any theory of statistical inference is how one should measure statistical evidence. Certainly the words `statistical evidence', or perhaps just 'evidence', are much used in statistical contexts. Still it is fair to say that the precise characterization of this concept is somewhat elusive. Our goal here is to provide a definition of how to measure statistical evidence for any particular statistical problem. Since evidence is what causes beliefs to change, we measure evidence by the change in belief from a priori to a posteriori. As such our definition involves prior beliefs and this raises issues of subjectivity versus objectivity in statistical analyses. We deal with this through a principle requiring the falsifiability of any ingredients to a statistical analysis. This leads to a discussion of checking for prior-data conflict and measuring the a priori bias in a prior.

TI 12_3 Fang, Yixin New Jersey Institute of Technology, USA Variable selection for partially linear models via learning gradients Title The performance of the proposed estimator is demonstrated in both simulation studies and real examples. Partially linear models, a compromise between parametric regression and non-parametric regression models, are very useful for analyzing high-dimensional data. Variable selection plays an important role in the use of partially linear models, which are of both linear and non-linear components. Variable selection for the linear component has been well studied. However, variable selection for the non-linear component usually relies on some assumption imposed on the structure of the non-linear component. For example, variable selection methods have been developed for additive partially linear models and generalized additive partially linear models. In this manuscript, we propose a new variable selection method based on learning gradients for partially linear models without any assumption on the structure of the non-linear component. The proposed method utilizes the reproducing-kernel-Hilbertspace tool to learn the gradients and the group-lasso penalty to select variables. In addition, a blockcoordinate descent algorithm is described and some theoretical properties are derived. The performance of the proposed method is evaluated via simulation studies and a real data application. TI 1/ 2 Filus Jorzy Oakton Community College LISA

11 14_2	riius, jeizy	Oakton community conege, OSA		
Title	Two Kinds of Stochastic Dependencies Bi-variate Distributions; Part 2			
A new class of bivariate probability densities as stochastic models for some biomedical as well as for				
reliability phenomena is constructed. The models are fusions of the already known bivariate				

"pseudodistributions" (pseudoexponential and pseudoWeibulian, in particular) with a rather new class of bivariate survival functions that, basically, look like a generalization of the first bivariate Gumbel's survival function. This generalization is obtained by use of 'additive hazard models' (see, Aalen, 1989) which are some modifications of the famous model by Cox (1972). The class of the "Gumbel-like" models, we will present, is quite general so that it, possibly, contains "most of" bivariate survival functions met in practical applications. In biomedical (or reliability) situations, we consider, a member of this class is supposed to model some particular stochastic dependence between biomedical quantities according to a bio-physical phenomena. In addition, stochastic description of some other, more complex type of phenomena, one obtains by applying to the previous bivariate distribution a pseudo-linear transformation of the random vector possessing the previously mentioned property of being the "Gumbel-like" distributed. The pseudo-linear transformation once applied to independent random variables produces the pseudodistributions. In the case it is applied to the random variables having the joint Gumbel-like distributions one obtains the fusion of two different stochastic models. Some analysis of the "combined" bivariate distributions will be presented.

TI 14_1	Filus, Lidia	Northeastern Illinois University, USA	
Title	Two Kinds of Stochastic Dependenci	es Bi-variate Distributions; Part 1	
A new class	of bivariate probability densities as st	cochastic models for some biomedical as well as for	
reliability pl	nenomena is constructed. The models	are fusions of the already known bivariate	
"pseudodist	ributions" (pseudoexponential and ps	seudoWeibulian, in particular) with a rather new class of	
bivariate su	rvival functions that, basically, look lik	e a generalization of the first bivariate Gumbel's	
survival fun	ction. This generalization is obtained b	by use of 'additive hazard models' (see, Aalen, 1989)	
which are so	ome modifications of the famous mod	lel by Cox (1972). The class of the "Gumbel-like"	
models, we	will present, is quite general so that it	t, possibly, contains "most of" bivariate survival	
functions m	et in practical applications. In biomed	ical (or reliability) situations, we consider, a member of	
this class is	supposed to model some particular st	ochastic dependence between biomedical quantities	
according to	ס a bio-physical phenomena. In additio	on, stochastic description of some other, more complex	
type of phe	nomena, one obtains by applying to th	ne previous bivariate distribution a pseudo-linear	
transformat	ion of the random vector possessing t	the previously mentioned property of being the	
"Gumbel-lik	e" distributed. The pseudo-linear trar	nsformation once applied to independent random	
variables pr	oduces the pseudodistributions. In the	e case it is applied to the random variables having the	
joint Gumbe	el-like distributions one obtains the fu	sion of two different stochastic models. Some analysis	
of the "com	bined" bivariate distributions will be	presented.	
TI 19_2	Gallaugher, Michael	McMaster University, Canada	
Title	Clustering Clickstream Data Using a l	Mixture of Continuous Time Markov Models	
In today's so	ociety, the internet is quickly becomin	g a major source of data. One interesting type of data	
that can be	utilized from the internet is clickstrea	m data, which monitors a user's web browsing patterns.	
Clustering is	5 the process of finding underlying gro	oup structures in a dataset, and although there has been	
ample work	done in the clustering paradigm for c	lickstream data, the methods often neglect the amount	
of time spei	nt on each website. By failing to inclue	de a time component in the model, we are robbing	
ourselves of	f potentially valuable information. We	propose a mixture of continuous time first order	
Markov mo	dels for the clustering of clickstreams	which would incorporate the time aspect. Both	
simulated d	ata, and real datasets will be consider	ed for the evaluation of the proposed methodology.	
TI 5_3	Ghosh, Indranil	University of North Carolina at Wilmington, USA	
Title	Some alternative bivariate Kumarasy	wamy models	
In this pape	In this paper we discuss various strategies for constructing bivariate Kumaraswamy distributions. As		
alternatives	alternatives to the Nadarajah, Cordeiro and Ortega (2011) bivariate model, four different models are		
introduced utilizing a conditional specification approach, a conditional survival function approach, an			
Arnold-Ng bivariate beta distribution construction approach, and a copula based construction approach.			
Distribution	al properties for such bivariate distrib	outions are investigated. Parameter estimation	
strategies for the models are discussed, as are the consequences of fitting two of the models to a			
particular data set involving hemoglobin content in blood samples before and after treatment.			

CENTRAL MICHIGAN UNIVERSITY	ายอาย	A-2016 Brock	
TI 18_4	Giurcanu, Mihai	University of Florida, USA	
Title	Thresholding Least Squares Inference	e in High Dimensional Regression Models	
We propose	a thresholding least-squares method	of inference for high-dimensional regression models	
when the n	umber of parameters, p, tends to infir	nity with the sample size, n. Extending the asymptotic	
behavior of	the F-test in high dimensions, we esta	ablish the oracle property of the thresholding least-	
squares est	imator when p = o(n). We propose tw	o automatic selection procedures for the thresholding	
parameter (using Scheffe and Bonferroni methods	s. We show that, under additional regularity conditions,	
the results o	continue to hold even if $p = exp(o(n))$.	Lastly, we show that, if properly centered, the residual-	
bootstrap e	stimator of the distribution of thresho	olding least-squares estimator is consistent, while a	
naive boots	trap estimator is inconsistent. In an in	itensive simulation study, we assess the finite sample	
properties of	of the proposed methods for various s	ample sizes and model parameters. The analysis of a	
	Compare Donia Emilio	e methods in practice.	
	Gomez-Deniz, Emilio	University of Las Palmas de Gran Canaria, Spain	
ntie A sissala sa	Computing Credibility Bonus-Maius	Premiums Using a Bivariate Discrete Distribution	
A simple mo	Diffication for computing the automo	blie insurance bonus-maius premiums is proposed here.	
number of	y, in automobile insurance the premit	im assigned to each policyholder is based only on the	
number of t	oss is populized to the same extent as	r who has had an accident producing a relatively small	
to be unfair	We propose a statistical model which	h distinguishes between two different types of claims	
incorporatio	a hivariate distribution based on th	e assumption of dependence. We also describe a	
bivariate pr	ior distribution conjugated with respe	e discrimption of dependence. We disc desense d	
bonus-malu	s premiums that satisfy appropriate t	ransition rules. A practical example of its application is	
presented a	ind the results obtained are compared	d with those derived from the traditional model in which	
only the nu	mber of claims is taken into account.		
TI 5_2	Hamedani, Gholamhossein	Marquette University, USA	
Title	Characterizations of Probability Dist	ribution Via the Concept of Sub-Independence	
Limit theore	ems as well as other well-known resul	ts in probability and statistics are often based on the	
distribution of the sums of independent (and often identically distributed) random variables rather than			
the joint dis	the joint distribution of the summands. Therefore, the full force of independence of the summands will		
not be requ	not be required. In other words, it is the convolution of the marginal distributions which is needed,		
rather than	the joint distribution of the summand	ds. The concept of sub-independence, which is much	
weaker than that of independence, is shown to be sufficient to yield the conclusions of these theorems			
and results.	It also provides a measure of dissocia	ition between two random variables which is much	
stronger tha	an uncorrelatedness. In this talk, certa	in characterizations of probability distributions based	
on the conc	ept of sub-independence will be pres	ented.	
1116_1	He, Jianghua	University of Kansas Medical Center, USA	
Title	Bayesian Reliability Assessment of F	acility-Level Patient Outcome Measures	
Patient hea	Ith outcome measures at facility-level	are often used as quality indicators of patient care.	
Within-facil	ity variations of such measures often	differ among facilities. The intraclass correlation	
coefficient based on equal within-subject variation may not be directly applied. Signal-to-hoise approach			
can be used to assess the facility-specific reliability of a measure with different within-subject variation			
measures at facility-level in differentiating one facility from others by allowing for facility-specific			
variation. The Bayesian framework is utilized to handle measures of events rates with non-negligible			
zeros.			
TI 2 2	He, Wenging	University of Western Ontario, Canada	
 Title	Improving Performance of Support V	/ector Machine Classifiers with Data Adaptive Kernel	
Support Ver	ctor Machine (SVM) is popularly used	in the classification/prediction of discrete outcomes.	
especially in high dimensional data analysis such as gene expression data analysis and image analysis. In			
this talk, a new enhance SVM method will be presented. The initial kernel function for the SVM is			
rescaled in an adaptive way so that the separation between two classes can be effectively enlarged,			

based on the prior knowledge obtained from the conventional SVM. The modified classifier takes into consideration the distribution of the support vectors in the feature space, and the correlation will be dealt with by selecting only limited numbers of parameters properly. Improvement of prediction accuracy from this data dependent SVM is shown with numerical studies.

TI 12_1	Hirose, Kei	Kyushu University, Japan
Title	Robust estimation for sparse Gaussian graphical model	
In Gaussian	graphical modeling, we often use a pe	enalized maximum likelihood approach with the L1
penalty for learning a high-dimensional graph. However, the penalized maximum likelihood procedure is		
sensitive to outliers. To overcome this problem, we introduce a robust estimation procedure based on		
the \gamma-divergence. The parameter estimation procedure is constructed using the Majorize-		
Minimization algorithm, which guarantees that the objective function monotonically decreases at each		
iteration. This method has a redescending property, which is known as a desirable property in robust		
statistics. Extensive simulation studies showed that our procedure performed much better than the		
existing methods.		

TI 7_3	Hlynka, Myron	University of Windsor, Canada
Title	Comments on the Gumbel Distribution	
The talk will discuss the Gumbel distribution and its relationship to integer partitions.		
TI 11_4	Hoegh, Andrew Montana State University, USA	
Title	Multiscale Spatiotemporal Modeling for Predicting Civil Unrest	

Civil unrest is a complicated, multifaceted social phenomenon that is difficult to forecast. Relevant data for predicting future protests consist of a massive set of heterogeneous data sources, primarily from social media. A modular approach to extract pertinent information from disparate data sources is implemented to develop a multiscale spatiotemporal framework to fuse predictions from algorithms mining social media. The novel multiscale spatiotemporal framework is scalable to handle massive spatiotemporal datasets and can incorporate hierarchical covariates. An efficient sequential Monte Carlo procedure coupled with the multiscale framework enables rapid computation of a richly specified Bayesian hierarchical model for spatiotemporal data.

TI 13_1	Hughes, John	University of Colorado, Denver, USA
Title	Hierarchical Copula Regression Models for Areal Data	
Regression	analysis for spatially aggregated data i	s common in a number of fields, including public
health, ecol	ogy, and econometrics. Often, the goa	al of such an analysis is to quantify the relationship
between an	outcome of interest and one or more	covariates. The mixed model with proper conditional
autoregress	ive (CAR) spatial random effects is cor	nmonly used to model such data but suffers serious
drawbacks.	First, an analyst must interpret covari	ate effects conditionally although marginal effects may
be of intere	st. Second, the dependence paramete	r of the proper CAR model has an intuitive conditional
interpretati	on, but the parameter's marginal inte	rpretation is complicated and counterintuitive;
specifically,	spatial units with a similar number of	neighbors have different marginal correlations. To
overcome t	hese two drawbacks, we propose a co	pula-based hierarchical model with covariance
selection. Our approach allows for unbiased estimation of marginal parameters and thus an		
intuitive marginal interpretation. The covariance-selection copula's single dependence parameter is the		
first-order correlation. This provides a dependence structure having intuitive conditional and marginal		
interpretations. We develop a computational framework that permits efficient frequentist inference for		
our model, even for large datasets. We evaluate the small- and large-sample performance of our method		
under simulated conditions, and apply our procedure to a widely studied Slovenia stomach cancer		
dataset.		
TI 1 4 0	Industry New York	Chara I hair and the law and

1114_3	Ishimura, Naoyuki	Chuo University, Japan
Title	Evolution of copulas and its application	ons
Copula is known to provide a flexible method for the understanding of dependence structure among		
random events. However, a copula function does not usually involve a time variable. We have developed,		
on the other hand, the concept of evolution of copulas, which claim that copula itself evolves according		

to the time variable. In this presentation, we review our recent study on this evolution of copulas and consider its applications, which include in particular the analysis of exchange rate modeling.

Jang, Gun Ho and Stein, Lincoln	Ontario Institute for Cancer Research, Canada	
Relative Belief based Signal Segmentation		
Cancers display a considerable degree of genomic copy number alteration (CNA), manifested as		
al and segmental amplifications and c	leletions. Many CNA detection algorithms assume the	
events follow a locally constant signal model, but low tumor fractions and/or subclonal heterogeneity		
signals that are difficult to interpret a	accurately. We propose a segmentation method using a	
relative belief inference on a locally constant model. The performance of the proposed method is		
presented and compared with several segmentation algorithms including circular binary segmentation,		
allele-specific piecewise constant fitting and SCAN algorithms.		
Jayalath, Kalanka	University of Houston - Clear Lake, USA	
A Graphical Test for Testing Random Effects in Common Statistical Designs		
	Jang, Gun Ho and Stein, Lincoln Relative Belief based Signal Segment olay a considerable degree of genomic al and segmental amplifications and c w a locally constant signal model, but signals that are difficult to interpret ef inference on a locally constant mod nd compared with several segmentat ic piecewise constant fitting and SCAN Jayalath, Kalanka A Graphical Test for Testing Random	

Analysis of means (ANOM) is a powerful graphical testing procedure for comparing means and variances in fixed effect models. The graphical interpretation of ANOM is a great advantage over the classical ANOVA approach. However, the ANOM only deals with the fixed factor effects. In this talk, we discuss the ability to extend the ANOM approach to testing random effects. We also discuss the use of the new ANOM approach in many different statistical designs including both random and mixed effects models with illustrative examples. The power performance of the proposed procedure is compared to the ANOVA approach via a simulation study.

TI 9_4	Jevtić, Petar and Hurd, Thomas R.	McMaster University , Canada
Tiala	The joint mortality of couples in continuous time	

Title The joint mortality of couples in continuous time

This paper introduces a probabilistic framework for the joint survivorship of couples in the context of dynamic stochastic mortality models. In contrast to previous literature, where the dependence between male and female times of death was achieved using a copula approach, this new framework gives an intuitive and flexible pairwise cohort-based probabilistic mechanism that can accommodate both deterministic and stochastic effects which the death of one member of couple causes on the other. It is sufficiently flexible to allow modeling of effects that are short term (broken heart) or long term in their durations. In addition, it can account for the state of health of the both the surviving and dying spouse and thus can allow for dynamic and asymmetric reactions of varying complexity. Finally, it can accommodate the dependence of lives before the first death. Analytical expressions for bivariate survivorship in representative models are given, and their estimation, done in two stages, is seen to be straightforward. First, marginal survivorship functions are calibrated based on UK mortality data for males and females of chosen cohorts. Second, the maximum likelihood approach is used to estimate the remaining parameters from simulated joint survival data. We show that the calibration methodology is simple, robust and fast, and can be readily used in practice.

TI 11_3	Keefe, Matthew J.	Virginia Tech, USA	
Title	Objective Bayesian Analysis for Gaussian Improper CAR Models		
Choosing ap	propriate priors for parameters of Ba	yesian hierarchical models for areal data is challenging.	
In particular	r, an improper conditional autoregress	sive (CAR) component is often used to account for	
spatial asso	spatial association. The use of vague proper priors for this model requires the selection of suitable		
hyperparam	hyperparameters. In this talk, we derive objective priors for the Gaussian hierarchical model with an		
improper CAR component and show that the reference prior results in a proper posterior distribution.			
We present results from a simulation study to compare properties of the proposed Bayesian procedures.			
We illustrate our methodology by modeling foreclosure rates in Ohio.			
TI 17_2	Kim, Jong-Min	University of Minnesota, Morris, USA	
Title	Directional Dependence via Copula Stochastic Volatility Model.		

By a theorem due to Sklar in 1959, a multivariate distribution can be represented in terms of its underlying margins by binding them together a copula function. Copulas are useful devices to explain the dependence structure between variables by eliminating the influence of marginals. A copula method for understanding multivariate distributions has a relatively short history in statistics literature; most of the

statistical applications have arisen in the last twenty years. In this talk, directional dependence via copula stochastic volatility model will be introduced with real example using financial data.

TI 6_1	Sellers, Kimberly	Georgetown University, USA	
Title	Introducing the Conway-Maxwell-Po	isson distribution	
The Conway	-Maxwell-Poisson (COM-Poisson) dist	ribution is a flexible alternative for modeling count	
data, and it	is quickly growing in popularity in bot	h the statistics and applied quantitative disciplines.	
While the Po	oisson distribution maintains the cons	strained equi-dispersion assumption (where the	
variance and	d mean equal), the COM-Poisson distr	ibution allows for data over- or under-dispersion	
(where the	variance is larger or smaller than the r	mean), and captures three classical distributions as	
special case	s. This talk will introduce the distribut	ion and serve as a review survey for the work done, and	
a prologue t	to the subsequent talks in the session.		
TI 10_3	Kleiber, Christian	Universitaet Basel, Switzerland	
Title	On moment indeterminacy of the ge	neralized variance	
The momen	t problem asks whether a distributior	a can be uniquely characterized by the sequence of its	
moments. Ir	n the univariate case, counterexample	es have been known for decades, e.g., the lognormal	
and certain	generalized gamma distributions. In t	he multivariate case, knowledge is still much more	
limited. Her	e we consider a univariate sampling d	istribution from classical multivariate analysis, the	
generalized	variance, which leads to a Stieltjes-ty	pe moment problem. It is shown that this object is not	
determined	by the sequence of its moments although	ough all the moments are finite. There is a dimension	
effect: the b	vivariate case the distribution is mome	ent-determinate, whereas in dimensions greater than	
two the dist	ribution is moment-indeterminate.		
TI 4_3	Li, Pengfei	University of Waterloo, Canada	
Title	Controlling IER and EER in replicated	regular two-level factorial experiments	
Replicated r	egular two-level factorial experiment	s are very useful for industry. The goal of these	
experiments	s is to identify active effects that affec	t the mean and variance of the response. Hypothesis	
testing proc	edures are widely used for this purpo	se. However, the existing methods give results that are	
either too li	beral or conservative in controlling th	e individual and experimentwise error rates (IER and	
EER). In this	paper, we propose a resampling proc	edure and an exact-variance method to identify active	
effects for t	he mean and variance, respectively, o	f the response. Monte Carlo studies show that our	
methods co	ntrol the IER and EER well.		
TI 13_2	Madsen, Lisa	Oregon State University, USA	
Title	Simulating Dependent Count Data		
Statisticians	simulate data for a variety of purpose	es: to assess and compare the performance of statistical	
procedures	and to design studies. Therefore, the	ability to simulate realistic data is an important tool. I	
will discuss	a method to simulate count-valued de	ependent random variables from the Gaussian copula	
that mimic o	observed data sets. Researchers typic	ally characterize dependence by Pearson's produce-	
moment co	rrelation, but for small-mean counts,	this is not as sensible as other measures such as	
Spearman's	Spearman's rank correlation. Furthermore, for small-mean count distributions, the high probability of		
ties requires special attention. I will show how to determine the Gaussian copula correlation matrix that			
will lead to any specified feasible Spearman or Pearson correlation matrix. I will demonstrate the method			
with an example based on an actual data set.			
TI 9_3	Mailhot, Mélina	Concordia University, Canada	
Title	Reciprocal Reinsurance Treaties Unc	ler an Optimal and Fair Joint Survival Probability	
Optimal reinsurance treaties between an insurer and a reinsurer considering both parties' interests will			
be presented. Most articles only focus on the insurer's point of view. The latest research considering			
both sides have considerably oversimplied the joint survival function. This situation leads to an			
unrealistic optimal solution; one of the parties can make risk-free profits while the other bears all the			
risk. A fair joint survival probability will be defined and optimized for a reciprocal reinsurance treaty			
under differ	under different principles and types of contract.		
under different principles and types of contract.			

CMU STCDSDA-2016 Brock			
TI 17_5	Makubate, Boikanyo, Galetlhakanelv Motsewabagale, Broderick O. Oluyede, Alphonse Amey	we Botswana International University of Science and Technology	
Title	Dagum Power Series Class of Distribu	tions with Applications to Lifetime Data	
In this pape	r. we present a new distribution class c	of distributions called the Dagum-Power Series (DPS)	
distribution	and in particular the Dagum-Poisson (I	DP) distribution. This model is obtained by	
compoundi	ng Dagum distribution with the power	series distribution. The hazard function, reverse hazard	
function, m	oments and mean residual life function	are obtained. Methods of finding estimators such as	
Minimum D	vistance, Maximum Product of Spacing,	Bayesian estimators, Least Squares, Weighted Least	
Squares and	d Maximum Likelihood will be discussed	d. A simulation study will be carried out to compare	
these estim	ation methods. Each method has its ov	wn strength and weakness. We also carry out some	
hypothesis	tests using the Wald test statistic. This	distribution will be shown to be competitive model for	
describing o	ensored observations in life time reliab	pility problems. Finally, we apply the Dagum-Poisson	
distribution	to real dataset to illustrate the usefuln	ness and applicability of the distribution.	
TI 22_4	Mallick, Avishek	Marshall University, USA	
Title	Robustness of Multiple Comparison N	Nethods for One-way and Two-way ANOVA with	
	Repeated Measurements		
In many exp	periments several observations are take	en over time or with several treatments applied to	
each subjec	t. These observations tend to be highly	correlated, particularly those observed adjacent to	
each other	with respect to time. In this paper we in	nvestigate the effect of the correlations among the	
observation	is in one-way and two-way ANOVA. A n	nodification of the standard tests suitable for AR(1)	
correlation	structure is proposed and its properties	s are investigated. We also apply the approximations	
to the distri	bution of F tests as suggested by Ander	rsen, Jensen, and Schou (1981) and carry out the	
analysis. Th	e modified procedure allows us to have	e a better control of the nominal significance level α .	
Consequent	tly, the multiple comparisons and multi	ple tests based on this modified procedure will lead to	
conclusions	with better accuracy.		
114_1	Mandal, Saumen	University of ivianitoba, Canada	
litle	Optimal designs for minimizing correl	ations among parameter estimators in a linear model	
In many reg	ression designs it is desired to render o	certain parameter estimators uncorrelated with others.	
Motivated b	by this fact, we construct optimal design	ns for minimizing covariances among the parameter	
estimators i	in a linear model, thereby rendering the	e parameter estimators approximately uncorrelated	
with each of	ther. In the case of rendering a parame	eter estimator uncorrelated with another two	
estimators,	we set up a compound optimization pr	oblem and transform the problem to one of	
maximizing	two functions of the design weights sir	huitaneousiy. The approaches are formulated for a	
general reg	ression mouel and are explored throug	n some examples including one practical problem	
	McNicholas Paul	McMaster University, Canada	
Titlo	Mixture of Coolossed Conoralized Hu	norholic Distributions	
Title Mixture of Coalesced Generalized Hyperbolic Distributions			
A mixture o	f multiple scaled generalized hyperboli	c distributions (MSGHDs) is introduced. Then, a	
mixture of coalesced generalized hyperbolic distributions is developed by joining a finite mixture of			
generalized hyperbolic distributions with a MSGHD. After detailing the development of the mixture of			
MSGHDs, which arises via implementation of a multi-dimensional weight function, the density of the			
coalesceu distribution is developed. A parameter estimation scheme is developed using the ever-			
The issue of cluster convertivity is examined and a special case of the MSCHDs is developed that is			
guaranteed to have convex clusters. These approaches are illustrated and compared using simulated and			
real data			
	Morris Darcy S		
Title	Rivariate Conway-Maywell-Poisson Di	istribution: Formulation Properties and Inference	
The hiveriet	The bivariate Deisean distribution is a negative distribution. For modeling bivariate second data, the basis		
assumption	assumptions and marginal equidisnersion, however, may prove limiting in some contexts. To allow for		
assumption	assumptions and marginal equidispersion, nowever, may prove limiting in some contexts. To allow for		

data dispersion, we developed a bivariate Conway-Maxwell-Poisson (COM-Poisson) distribution that includes the bivariate Poisson, bivariate geometric, and bivariate Bernoulli distributions all as special cases. As a result, the bivariate COM-Poisson distribution serves as a flexible alternative and unifying framework for modeling bivariate count data, especially in the presence of data dispersion. This is joint work with Kimberly Sellers (Georgetown University) and Narayanaswamy Balakrishnan (McMaster University).

TI 20_3	Moura, Ricardo	Universidade Nova de Lisboa (CMA-FCT/UNL), Portugal	
Title	Likelihood-based exact inference	for Posterior and Fixed-Posterior Predictive Sampling	
	synthetic data under the MLR model		
Synthesizing	g datasets as a Statistical Disclosure	Control technique has become more and more popular.	
Under mult	ivariate linear regression model, like	elihood-based exact inference for singly and multiply	
imputed syr	nthetic data generated under Poste	rior Predictive Sampling (PPS) will be presented, filling a	
gap in the e	xisting SDC literature. It will be also	presented a likelihood-based exact inference for multiply	
imputed da	ta generated via a new method, cal	led Fixed-Posterior Predictive Sampling (FPPS), proposed	
to overcom	e problems inherent to the PPS met	hod. An application using U.S. 2000 Current Population	
Survey data	will be discussed and comparisons	between PPS and FPPS are presented.	
TI 3_3	Muthukumarana, Saman	University of Manitoba, Canada	
Title	Non-inferiority Hypothesis Testing	g in Two-arm Trials using Relative Belief Ratios	
We discuss	a Bayesian approach for assessing r	non-inferiority in two-arm trials using relative belief ratio.	
A relative b	elief ratio is a measure of the evide	nce in favour of a hypothesis. It is similar to the Bayes	
factor as bo	th measure the change in belief fro	m a priori to a posteriori but has better optimal	
properties.	Under different conditions, we obta	ain the posterior distribution of the difference in	
treatment e	ffects between experimental treatr	nent and reference treatment. Once this distribution is	
determined	, we propose a Bayesian decision cr	iterion using the relative belief ratio. We illustrate the	
proposed m	ethod by applying it to data arising	from two-arm clinical trials. Some extensions to discrete	
data with ex	ccessive zeros will also be discussed		
TI 21_4	Ng, Hon Keung Tony	Southern Methodist University, USA	
Title Statistical Inference for Component Distribution from System Lifetime Data			
In this talk, statistical inference of the reliability characteristics of the components in the system based			
on the lifetimes of systems will be discussed. We study the problem of testing the homogeneity of			
distributions of component lifetime based on system lifetime data with known system signatures. Both			
parametric	and nonparametric procedures are	developed for this problem. The performance and	
limitations of	of the proposed nonparametric met	hod are discussed. Then, we assume the component	
lifetimes fol	low exponential distributions and d	levelop exact and asymptotic parametric tests. Monte	
Carlo simula	ation study is used to compare the p	performance of different parametric and nonparametric	
procedures.			
117_4	Nguyen, Christine and Huang Me	I Ling Brock University, Canada	
litle	On High Quantile Regression		
The estimat	ion of conditional quantiles at very	high or low tails of a heavy tailed distribution is of interest	
in numerou	s applications. We study a linear qu	antile regression model which uses an L1- loss function,	
and the optimal solution of linear program, for estimating coefficients of regression. This paper proposes			
a weighted quantile regression method for certain extreme value sets. Monte Carlo simulations show			
good results for the proposed weighted method. Comparisons of the proposed method and existing			
methods are given. The paper also investigates real-world examples by using the proposed weighted			
1118_3	Nkurunziza, Severien	University of Windsor, Canada	
litle	A class of restricted estimators in	multivariate measurement error regression model	
In this paper, we study an estimation problem in multivariate regression model with measurement error.			
In particular, we consider the case where the regression coefficient may satisfy some restrictions. We			
propose the unrestricted estimator (UE) and a class of restricted estimators, which includes as a special			

cases three restricted estimators given in recent literature. Further, we study the asymptotic properties

of the proposed class of estimators under the null and alternative hypothesis. To this end, we generalize some findings underlying the elliptically contoured distributions. Thanks to the generalized findings, we establish Asymptotic Distributional Risk (ADR) for the UE as well as the ADR of any member of the proposed class of the restricted estimators and we compare their relative performance. It is established that near the null hypothesis, the restricted estimators (REs) perform better than the UE. But the REs perform worse than the UE when one moves far away from the null hypothesis. Finally, in order to illustrate the application of the proposed method, we present some simulations and we analyze a real data set. The numerical findings corroborate the established theoretical results.

TI 10_1	Nolde, Natalia	University of British Columbia, Canada
Title	Multivariate light-tailed distribution	s: from the asymptotic shape of sample clouds to
	properties of multivariate extremes.	
Sample clou	ids of multivariate data points from li	ght-tailed distributions can often be scaled to converge
onto a dete	rministic set as the sample size tends	to infinity. It turns out that the shape of this limit set
can be relat	ed to a number of extremal tail and d	lependence properties of the underlying multivariate
distribution	. In this talk, I will present several sim	ple relations, and illustrate how they can be used to
replace free	uently cumbersome or intractable an	alytical computations.
TI 15_3	Oh, Dong Hwan B	oard of Governors of the Federal Reserve System, USA
Title	Time-Varying Systemic Risk: Evidence	e from a Dynamic Copula Model of CDS Spreads
This paper p	proposes a new class of copula-based	dynamic models for high dimension conditional
distribution	s, facilitating the estimation of a wide	variety of measures of systemic risk. Our use of copula-
based mode	els enables the estimation of the joint	model in stages, greatly reducing the computational
burden. We	use the proposed new models to stu	dy a collection of daily CDS spreads on 100 U.S. firms.
We find tha	t while the probability of distress for	individual firms has greatly reduced since the 2008
financial cri	sis, a measure of systemic risk is subs	tantially higher now than in the pre-crisis period.
TI 17_4	Oluyede, Broderick O.	Georgia Southern University, USA
Title	The Burr XII Weibull Power Series Di	istribution: Theory and Applications
A new class	of power series distributions is devel	oped and presented. In particular, the new Burr XII
Weibull-Poi	sson (BWP) distribution is introduced	and its properties are explored in detail. Some
estimation t	techniques including maximum likelih	ood estimation method are used to estimate the model
parameters	and finally applications of the model	to real data sets are presented to illustrate the
usefulness o	of the proposed class of distributions.	1
TI 22_2	Otunuga, Michael	Marshall University, USA
	Distribution Models of Energy Comr	nodity Spot Price Processes
In this work	, we undertake the study to shed ligh	t on world oil market and price movement, price
balancing p	rocess and energy commodity behavi	or. A system of stochastic model for dynamic of energy
pricing proc	ess is proposed. Different methods fo	or parameter estimation is discussed. In addition, by
developing	a Local Lagged Adapted Generalized N	Method of Moment (LLGMM) method, an attempt is
made to co	mpare the simulated estimates derive	ed using LLGMM and other existing method. These
developed r	esults are applied to the Henry Hub r	natural gas, crude oil, coal, and ethanol data set.
TI 8_3	Paolella, Marc	University of Zurich, Switzerland
Title	Stable Paretian Distribution Testing	
A fast method for estimating the parameters of a stable-APARCH not requiring likelihood or iteration is		
proposed. Several powerful tests for the (asymmetric) stable Paretian distribution with tail index \$1<		
\alpha < 2\$ are developed and used for assessing the appropriateness of the stable assumption as the		
innovations process in stable-GARCH-type models for daily stock returns. Overall, there is strong		
evidence against the stable as the correct innovations assumption for all stocks and time periods, though		
for many stocks and windows of data, the stable hypothesis is not rejected.		
TI 22_1	Pararai, Mavis	Indiana University of Pennsylvania, USA
Title	A New Lifetime Distribution With Ar	polications

The beta Lindley-Poisson (BLP) distribution which is an extension of the Lindley-Poisson Distribution is introduced and its properties are explored. This new distribution represents a more flexible model for the lifetime data. Some statistical properties of the proposed distribution including the expansion of the density function, hazard rate function, moments and moment generating function, skewness and kurtosis are explored. Renyi entropy and the distribution of the order statistics are given. The maximum likelihood estimation technique is used to estimate the model parameters and finally applications of the model to real data sets are presented for the illustration of the usefulness of the proposed distribution.

TI 2_3	Peng, Yingwei	Queen's University, Canada	
Title	Prediction accuracy for cure probab	ility in cure models	
Prediction accuracy of a cure model to predict the cure probability of a subject is an important but not			
well addressed issue in survival analysis. We propose a method to assess the prediction accuracy of a			
mixture cur	e model in predicting cure probability	/ based on inverse probability of censoring weights to	
incorporate	the censoring and latent cure status	in the data. The consistency of the estimator is	
examined. A	simulation study is conducted to in،	vestigate the performance of estimator based on training	
data only. A	a only. An application of the method to a real data set is illustrated.		
TI 8_2	Pigeon, Mathieu UQA	M, Montréal (Québec), Canada	
Title	Composite (mixed) models for individ	lual loss reserving	
In this talk, v	ve consider composite models (CM) ba	sed on a distribution f up to an unknown threshold and a	
distribution	g thereafter. Instead of using a single t	hreshold value applying uniformly to the whole dataset, a	
composite m	nixed model (CMM) allows for heteroge	eneity with respect to the threshold and let it vary among	
observations	s. More specifically, the threshold value	e for a particular observation is seen as the realization of a	
random vari	able and the CMM is obtained by avera	aging over the population of interest. We apply these	
models, and	some extensions, to evaluate loss rese	rves in a micro-level actuarial dataset. We illustrate results	
with an emp	irical analysis using a real portfolio as v	vell as with simulations.	
TI 15_1	Plante, Jean-François HEC N	Iontreal, Business School in Montreal, Quebec, Canada	
Title	Rank Correlation under Categorical	Confounding	
Rank correla	Rank correlation is invariant to marginal transformations, but it is not immune to confounding. Assuming		
a categorica	I confounding variable is observed, t	he author proposes weighted coefficients of correlation	
developed v	within a larger framework based on c	opulas. While the weighting is clear under the	
assumption	that the dependence is the same wit	hin each group implied by the confounder, the author	
extends the Minimum Averaged Mean Squared Error (MAMSE) weights to borrow strength between			
groups when the dependence may vary across them. Asymptotic properties of the proposed coefficients			
are derived and simulations are used to assess their finite sample properties.			
TI 1_3	Prieto, Faustino and Sarabia, Jose N	Maria University of Cantabria, Spain	
Title	Family of generalized power law (GI	PL) distributions: Properties and Applications	
Many real phenomena can be modelled by the Power Law (Pareto) distribution in their upper tail.			
However, th	nat distribution usually fails when we	focus on their whole range. In this paper, we provide	
empirical ev	vidence that, the family of Generalize	d Power Law (GPL) distributions, can be useful for	
modelling tl	ne whole range, of those real phenon	nena with power law tail. To do that, we combine	
maximum li	kelihood method, as a fitting techniq	ue, with Kolmogorov-Smirnov test method based on	
bootstrap resampling, as a goodness of fit test. In addition, we compare that family of distributions with			
other well known distributions.			
TI 8_4	Provost, Serge	The University of Western Ontario, Canada	
Title	Differentiated Logdensity Estimates	and Approximants as Rational Functions	
We propose	e a density approximation methodolo	gy whereby the derivative of the logarithm of a density	
approximan	it is expressed as a polynomial or a ra	tional function. The polynomial coefficients are	
determined	by matching moments and solving the	ne resulting system of linear equations. This	
methodology is applied to two test statistics as well as certain mixtures of density functions. As well, it is			
explained th	nat this approach can produce density	y estimates.	
TI 6_2	Raim, Andrew	U.S. Census Bureau, USA	
Title	A flexible zero-inflated model to ad-	dress data dispersion	

The Conway–Maxwell–Poisson distribution has seen increased interest in recent years due to its ability to model both overdispersion and underdispersion relative to the Poisson distribution. This work considers a zero-inflated Conway–Maxwell–Poisson (ZICMP) distribution for the common problem of excess zeroes in count data. ZICMP becomes a flexible regression model by linking covariates to its count rate and zero-inflation parameters. Through simulation, we examine some properties of the maximum likelihood estimator and a test for equidispersion. ZICMP performs favorably compared to related count models in analyzing several synthetic datasets, as well as a real study of unwanted pursuit behaviors in separated couples.

TI 8_1	Ren, Jiandong	The University of Western Ontario, Canada	
Title	Moment-Based Density Approximat	ions for Aggregate Losses	
The determ apply a mor bivariate ag efficient, co a set of obs	The determination of the distribution of aggregate losses is of crucial importance for an insurer. We apply a moment-based density approximation method to approximate the distributions of univariate and bivariate aggregate losses. The proposed technique which is conceptually simple and computationally efficient, constitutes a viable alternative to the commonly used recursive and FFT methods. As well, given a set of observed aggregate losses, the methodology advocated herein can readily be applied in		
conjunction	with the sample moments for model	ing purposes.	
TI 10_4	Richter, Wolf-Dieter	University of Rostock, Germany	
Title	Statistical reasoning on scaling parameters in dependent p-generalized elliptically contoured distributions		
Scaling para dimensiona properties o constructin	ameters of two dependent variables h I observation vector follows a p-gener of the geometric representation of the g exact significance tests and confider	aving known expectations are compared if the two- ralized elliptically contoured distribution. Basic e multivariate sample distribution are used in nce estimates.	
TI 1_1	Saez-Castillo, Antonio Jose and	University of Jaen, Spain	
_	Conde-Sanchez, Antonio		
Title	Regression models based on extend	ed Poisson distributions in R	
of lack of equidispersion, mainly due to the presence of individual heterogeneity, but also caused by the existence of negative contagion effect. Only a reduced subset of these extended Poisson distributions has been employed to develop regression models for count data. In this work, we present a survey of such models which have been implemented in R Statistical Software. Code to describe applications in Business. Management and Seenemiss is included and commented to facilitate their use			
TI 15_2	Samanthi, Ranadeera	Central Michigan University, USA	
Title	Comparing the Riskiness of Depende	ent Insurance Portfolios	
A nonparametric test based on nested L-statistics to compare the riskiness of portfolios was introduced by Brazauskas, Jones, Puri, and Zitikis (2007). In this work, we investigate how the performance of the test changes when insurance portfolios are dependent. To achieve that goal, we perform a simulation study using spectral risk measures. Further, three insurance portfolios are generated, and their interdependence is modeled with the three-dimensional elliptical copulas. It is found that the presence of comonotonicity makes the test liberal for all the risk measures under consideration. We illustrate how to incorporate such findings into sensitivity analysis of decisions.			
TI 1_4	Sarabia, Jose Maria and Prieto, Fau	stino University of Cantabria, Spain	
Title	A Hierarchy of Multivariate Pareto D	Distributions with Applications in Risk Analysis	
The Pareto distribution and all its different versions have long been used as a suitable model for many non-negative economic variables, including losses and other variables in risk analysis. In this paper we introduce a hierarchy of multivariate Pareto distributions. The hierarchy is composed by three families, which permits more and more flexibility. We consider the aggregated risks and we study the individual and collective risk models based on the three dependence structures. In two of these families we consider some relevant collective models with Poisson and negative binomial as primary distributions. Finally, some applications with data are given.			

Title

Extreme Values or Mixture Distribution?

For modeling a dataset of employee days ill, or accidents among insureds, levels of granularity are considered in describing the population, from a single distribution, possibly with extreme values, to a bimodal distribution, to a mixture of two or more distributions, to modeling the population at the individual level.

TI 16_3	Shahtahmassebi, Golnaz	Nottingham Trent University, UK
Title	Bayesian Estimation of Change Point problems using Conditionally Specified Prior	
	Distributions with Applications	

In data analysis, change point problems correspond to abrupt changes in stochastic mechanisms generating data. The detection of change points is a relevant problem in the analysis and prediction of time series. In this talk, we propose and illustrate a Bayesian solution to the estimation of change point problems. The estimation is based on a broad class of conjugate prior distributions constructed from a conditional specification methodology. Hyperparameter elicitation methodologies are discussed and simulation from the resulting posterior distributions is obtained using Gibbs sampler. We demonstrate some examples with simulated and real data.

TI 4_2	Sinha, Sanjoy	Carleton University, USA
Title	Joint modeling of longitudinal and su	rvival data with a covariate subject to limit of detection
Joint models are often used for investigating the effect of an endogenous time-dependent covariate on		
survival times. I will discuss a novel method for jointly analyzing longitudinal and time-to-event data		
when a covariate is subject to the limit of detection. We often assume latent processes based on random		
effects in order to describe the association between longitudinal and time-to-event data. We study the		
effects of misspecified random effects distributions on the estimates of the model parameters. We also		
present an application of the proposed method using a large clinical dataset.		

TI 21_3	So, Hon Yiu	McMaster University, Canada
Title	Title of Presentation: The EM algorithm for One-shot Device Testing with Competing Risk	
	under Different Lifetimes Distributio	ns

In this talk, we extend the recent works of Balakrishnan and Ling by introducing a competing risk model into a one-shot device testing analysis under accelerated life test setting. Expectation maximization (EM) algorithms are developed for the estimation of model parameters under di_erent lifetime distributions. Extensive Monte Carlo simulations are carried out to assess the performance of the proposed method of estimation. The advantages of the EM algorithms over the traditional Fisher scoring method are displayed through simulation.

TI 13_3	Song, Peter	University of Michigan, USA
Title	Copula Random Field with Application	on to Longitudinal Neuroimaging Data Analysis
Motivated b	by the needs of analyzing massive long	itudinal imaging data, we present an extension of
GeoCopula	proposed by Bai et al. (2014). This new	v model, termed as imageCopula, helps us to address
multilevel spatial-temporal dependencies arising from longitudinal imaging data. We propose an efficient		
composite likelihood approach by constructing joint composite estimating equations (JCEE) and develop		
computatio	nally feasible algorithm to solve the JC	CEE. We show that the computation is scalable to large-
scale imaging data. We conduct several simulation studies to evaluate the performance of the proposed		
models and estimation methods. We apply the imageCopula to analyze a longitudinal PET data set from		
the Alzheimer's Disease Neuroimaging Initiative (ADNI) study.		

TI 5_1	Su, Steve	Covance Pty Ltd, Australia
Title	Transformation and Family of Gener	alised Lambda Distributions

Generalised lambda distributions (GLDs) are very versatile distributions that can effectively model a wide range of continuous empirical data, despite their simple looking formulae. The versatility of GLDs can be extended further by considering one to one, monotonic transformation of GLD variables to generate new distributions. This presentation discusses the theory, application and fitting algorithm of exponential, arctan, inverse (domain of data being positive or negative, but not both) and squared (positive values only) transformations of GLDs for survival analysis, truncated data and extreme value modelling, and attaining shapes that traditionally can only be achieved using mixtures of statistical distributions.

CENTRAL MICHIGAN UNIVERSITY	ICOSD	A-2016 Brock	
TI 11_1	Tegge, Allison N.	Virginia Tech, USA	
Title	Bayesian analysis for multi-subject t	ime course RNA-seq experiments	
We introdu	ce Bayesian methodology for the anal	ysis of multi-subject time course RNA-seq experiments.	
Our method	dology facilitates the study of gene rea	actions to certain biological processes through time.	
Specifically,	we develop an empirical Bayes appro	pach to detect differentially expressed genes that	
reduces the	high dimensionality of time course d	ata by empirical orthogonal functions. The proposed	
model assu	mes distinct distributions for different	tially and non-differentially expressed genes, and	
borrows str	ength across genes and subjects to in	crease detection power. We illustrate our methodology	
with an ana	llysis of an RNA-seq dataset from B ce	lls to study their temporal response pattern to the	
human influ	ienza vaccine.		
TI 20_2	Teodoro, M. Filomena	Portuguese Navy & CEMAT, Instituto Superior	
		Técnico, Lisbon University, Portugal	
Title	Modeling the time between failures	using likelihood ratio tests	
The aim of	this work is to model the time betwee	n failures of certain type of equipment essential for the	
proper fund	tioning of ships from a certain class fr	om Portuguese Navy, so the maintenance can be	
adjusted av	oiding additional costs. To help us cho	pose among different distributions that may be fitted to	
these data,	we will use likelihood ratio tests for the	he equality of Gamma distributions. Since the exact	
distribution	s of the statistics are not tractable, ne	ear-exact distributions will be developed to obtain very	
sharp p-val	ues and quantiles. This will allow for the	he easy practical implementation of these tests.	
TI 17_3	Tsukahara, Hideatsu	Seijo University, Japan	
Title	The empirical beta copula		
Applying Ba	ker's construction of copulas based o	n the order statistics with the ranks being coefficients	
leads us to	define the empirical beta copula, whic	ch is a particular case of the empirical Bernstein copula.	
We show th	hat the empirical beta copula is a genu	ine copula by providing (necessary and) sufficient	
conditions	for a Bernstein transformation to be a	copula. Furthermore, we establish the assumptions	
under which	h the standard asymptotic results hold	d for the empirical Bernstein copula. Our Monte Carlo	
simulations	study snows that the empirical beta co	opula outperforms the empirical copula in terms of the	
bias and the	e integrated mean squared error.		
11 18_1	Vinogradov, Viadimir and Paris,	Onio University, USA/University of Abertay Dundee,	
Title	Richard B.	scotland	
	Poisson-Tweedle mixtures: a case st	uay A the femily of Deisser with were compared in the the	
Poisson-IW	the mixtures constitute a subclass of	of the family of Poisson mixtures corresponding to the	
case where	the mixing measure is generated by a	the "newer" nerometer, such mixtures comprise both	
with non-ne	egative support. For a specific value of	actorial dispersion model, which are charactorized by	
the variance	a and the dispersion functions, respec	tively. We concentrate on the former structure	
illustrating	our results by paying attention to New	man type A distributions. We construct local	
annovimations for Poisson-Tweedie mivtures			
TI 12 2	Wang Bin	University of South Alabama, USA	
Title	Normalizing next-generation sequer	oring data via Density Estimation and Binning	
Normalizing flext-generation sequencing data via Density Estimation and Binning			
Next-generation sequencing (NGS) is widely used in biomedical studies. Normalization is challenging and			
the data an	d estimating the distributions using the	pree methods: 1) root-unroot algorithm 2) finite normal	
mixture mo	del using expectation-maximization a	loorithm and 3) fitting generalized lambda distribution	
In addition	a novel measure of similarity of the g	ene profiles is proposed to assess the normalization	
results and	detect differentially expressed genes	as well. The proposed methods will be applied to	
multiple NGS data sets and will be benchmarked with some existing NGS normalization methods			
TI 21 1	Wang, Dongliang	SUNY Upstate Medical University, USA	
 Title	Penalized Empirical Likelihood for th	e Cox Regression Model	
Current per	Current penalized regression methods for selecting and estimating regression coefficients in the Cox		
	model are mainly developed on partial likelihood. In this paper, an empirical likelihood method is		

proposed in conjunction with appropriate penalty function. Asymptotic properties of the resulting estimators, including the consistency, asymptotic normality and the oracle property with respect to variable selection, are theoretically proved. Simulation studies suggest that empirical likelihood is superior to partial likelihood in terms of selecting correct risk factors and reducing estimation error. The well-known primary biliary cirrhosis data set is used to illustrate and compare the empirical likelihood method with existing methods.

TI 2_1	Wu, Changbao	University of Waterloo, Canada	
Title	Distribution Theory in Empirical Like	lihood for Complex Survey Data	
Empirical likelihood has been shown to be a useful tool for handling parameters defined through			
estimating e	estimating equations. The use of empirical likelihood for complex survey data, however, encounters		
various issu	es for the ``non-standard'' asymptotic	distribution of the empirical likelihood ratio statistics.	
In this talk,	we present some basic distribution th	eory for two different formulations of the empirical	
likelihood m	nethods for survey data. We further pr	resent results on the posterior distribution of the	
Bayesian en	npirical likelihood methods and the re	lated computational issues in Bayesian inference for	
surveys.		-	
TI 11_2	Wu, Ho-Hsiang	National Cancer Institute, USA	
Title	Mixtures of Nonlocal Priors for Varia	able Selection in Generalized Linear Models	
We propose	two novel scale mixtures of nonlocal	priors (SMNP) for variable selection in generalized	
linear mode	ls. In addition, we develop a Laplace i	ntegration procedure to compute posterior model	
probabilities	s. We show that under certain regular	ity conditions the proposed methods are variable	
selection co	nsistent. Simulation studies indicate t	hat our proposed SMNP-based methods select true	
models with	۱ higher success rates than other exist	ing Bayesian methods. Furthermore, our methods lead	
to mean pos	sterior probabilities for the true mode	els that are closer to their empirical success rates.	
Finally, we i	nally, we illustrate the application of our SMNP-based methods with the analyses of two real datasets.		
TI 9_2	Wu, Jiang and Zitikis, Ricardas	Western University, Canada	
Title	Background risk models, two-period	economies, and optimal strategies that minimize	
	financial losses		
Background	risk models, including a myriad of Par	reto- and beta-type multivariate distributions, provide a	
particularly	intuitive and fruitful way for modeling	g dependence in real-life applications. In this talk, we	
shall discuss	s one of such applications that concern	ns decision-making in a two-period economy when a	
pivotal decision needs to be made during the first time-period and cannot be subsequently reversed.			
TI 12_4	Xie, Yuying	Michigan State University, USA	
Title	Joint Estimation of Multiple Depend	ent Gaussian Graphical Models with Applications to	
	Mouse Genomics		
Gaussian graphical models are widely used to represent conditional dependence among random			
variables. In	this paper we propose a novel estimation	ator for data arising from a group of Gaussian graphical	
models that	are themselves dependent. A motiva	ting example is that of modeling gene expression	
collected or	n multiple tissues from the same indiv	idual: a multivariate outcome that is affected by	
dependenci	es at the level of both the tissue and t	the whole body, and existing methods that assume	
independence among graphs are not applicable. To estimate multiple dependent graphs, we decompose			
the problem	ו into two graphical layers: the system	nic layer, which is the network affecting all outcomes	
and thereby inducing cross-graph dependency, and the category-specific layer, which represents the			
graph-specific variation. We propose a graphical EM technique that estimates the two layers jointly,			
establish the estimation consistency and selection sparsistency of the proposed estimator, and confirm			
by simulation that the EM method is superior to a simple one-step method. Lastly, we apply our			
graphical EM technique to mouse genomics data and obtain biologically plausible results.			
TI 4_4	Xu, Xiaojian	Brock University, Canada	
Title	Optimal designs for regression when	n measurement error is present	
Optimal designs for regression have a great impact on the precision of model parameter estimation.			
Utilizing a D-optimal design may ensure that the joint confidence regions for true model parameters will			
be as small as possible for a fixed sample size. Moreover, measurement error is often present in the			

majority of models and should be taken into account when designing an experiment. Considering a simple linear model with possible measurement error in both the response and explanatory variables, we have investigated the properties of exact and approximate Doptimal designs for various cases of variance structure associated with measurement error involved.

TI 20_1	Yagi, Ayaka and Seo, Takashi	Tokyo University of Science, Japan
Title	The null distribution of the LRT statis	tic for mean vectors with monotone missing data
In this talk,	we consider the likelihood ratio test (l	RT) for a normal mean vector or two normal mean
vectors whe	en the data have a monotone pattern	of missing observations. For the one-sample and two-
sample prob	plems, we derive the modified likeliho	od ratio test statistics by using the asymptotic
expansion a	pproximation. Further, we investigate	the accuracy of the upper percentiles of these test
statistics by Monte Carlo simulation.		
TI 2_4	Yi, Grace Y.	University of Waterloo, Canada
Title	Title Analysis of High-Dimensional Correlated Data in the Presence of Missing Observations and	
Measurement Error		
In contrast to extensive attention on model selection for univariate data, research on correlated data		
remains relatively limited. Furthermore, in the presence of missing data and/or measurement error,		

remains relatively limited. Furthermore, in the presence of missing data and/or measurement error, standard methods would typically break down. To address these issues, we propose marginal methods that simultaneously carry out model selection and estimation for high-dimensional correlated data which are subject to missingness and measurement error. To justify the proposed methods, we provide both theoretical properties and numerical assessments.

TI 18_2	Yu, Guan	State University of New York at Buffalo, USA
Title	Sparse Regression for Block-missing	Multi-modality Data

In modern scientific research, many data are collected from multiple modalities (sources or types). Since different modalities could provide complementary information, sparse regression methods using multi-modality data could deliver better prediction performance. However, one special challenge for using multi-modality data is related to missing data. In practice, the observations of a certain modality can be missing completely, i.e., a complete block of the data is missing. In this paper, we propose a new two-step sparse regression method for block-missing multi-modality data. In the first step, we estimate the covariance matrix. Rather than deleting samples with missing data or imputing the missing observations, the proposed method makes use of all available information. In the second step, based on the estimated covariance matrix, a Lasso-type estimator is used to deliver a sparse estimate of the regression coefficients in the linear regression model. The effectiveness of the proposed method is demonstrated by theoretical studies, simulated examples, and a real data example from the Alzheimer's Disease Neuroimaging Initiative. The comparison between the proposed method and some existing methods also indicates that our method has promising performance.

Abstracts for General-Invited Speakers (Alphabetic Order)

Session Name: GI m_k (m_k = kth speaker in mth session)

It is assumed the first author is the presenter, unless an asterisk (*) is used to indicate the presenter. The affiliation listed is the presenter's affiliation only.

GI 4_4	Abdelrazeq, Ibrahim	Rhodes College, USA
Title	Goodness-of-Fit Test: Levy Driven Continuous ARMA Model	
The Levy driven CARMA(p,q) process is becoming a popular one with which to model stochastic volatility.		
However, there has been little development of statistical tools to verify this model assumption and		
assess the goodness-oft of real world data (Realized		

ICOSDA 2016

Volatility). When a Levy driven CARMA(p,q) process is observed at high frequencies, the unobserved driving process can be approximated from the observed process. Since, under general conditions, the Levy driven CARMA(p,q) process can be written as a sum of p-dependent Levy driven Ornstein-Uhlenbeck processes, the methods developed in Abdelrazaeq et al. (2014) can be employed in order to use the approximated increments of the driving process to test the assumption that the process is Levy-driven. Performance of the test is illustrated through simulation assuming that the model parameters are known.

GI 10_1	Aljarrah, Mohammad	Tafila Technical University, Jordan	
Title	Exponential-Normal distribution		
In this pape	In this paper, a new three parameter distribution called the exponential-normal distribution is defined		
and studied	. Various properties of the dist	ribution such as hazard function, quantile function, moments,	
Shannon en	Shannon entropy are discussed. The method of maximum likelihood is proposed to estimate the		
parameters	of the distribution. A real data	set is applied to illustrate the flexibility of the distribution.	
GI 10_2	Alshkaki, Rafid S.	Ahmed Bin Mohammed Military College, Doha, Qatar	
Title	An Extension to the Zero-Infla	ated Generalized Power Series Distributions	
In many san	npling involving non negative ir	nteger data, the zeros are observed to be significantly higher	
than the ex	pected assumed model. Such m	nodels are called zero-inflated models, and are recently cited in	
literature in	various fields of science includ	ling; engineering, natural, social and political sciences. The	
class of zero	o-inflated Generalized Power Se	eries distributions was recently considered and studied due to	
its empirica	I needs and application. In this	paper an extension to class of zero-inflated power series	
distribution	s was introduced, and its chara	cteristics were studied and analyzed.	
GI 10_3	Alzaghal, Ahmad	State University of New York at Oswego, USA	
Title	The Exponentiated Gamma-P	areto Distribution, Properties and Application	
A new distri	bution, the exponentiated gam	ma-Pareto distribution is introduced and studied. Some of its	
properties,	including distribution shapes, li	mit behavior, hazard function, Rényi and Shannon entropies,	
moments, a	nd deviations from the mean a	nd median are discussed. The method of maximum likelihood	
is used to e	stimate the exponentiated gam	ma-Pareto distribution parameters and a simulation study is	
carried out	to assess its performance. The	flexibility of the exponentiated gamma-Pareto distribution is	
illustrated b	y applying it to real data sets a	nd the results compared with other distributions.	
GI 7_5	Arowolo, Olatunji and	Lagos State Polytechnic, Nigeria/Ladoke Akintola University	
Title	Ayinde, Kayode	of rechnology, Nigeria	
nue	problem	ques of simultaneous equation model with multiconnearity	
Multicolline	arity problem is still inevitable	in Simultaneous Equation Model (SEM). The work adopted the	
single equat	tion estimators for handling mu	Iticollinearity, Ordinary Ridge Regression Estimator (ORRE)	
and Genera	lized Ridge Regression Estimate	or (GRRE) into SEM and proposed some estimators using the	
approach of	f the conventional ones. Monte	e Carlo experiments were conducted with two (2) types of	
exogenous	variable at seven (7) levels of m	nulticollinearity, correlation between error terms and sample	
sizes. The e	stimators were compared and	ranked on the basis of their performances vis-à-vis their finite	
sampling properties. The proposed estimators, ORR-GRRE, 2SGRRE and OLS-GRRE, are recommended for			
parameters' estimation of SEM.			
GI 1_5	Bakar, Shaiful Anuar Abu	University of Malaya, Malaysia	
Title	Actuarial loss modeling with t	he composite models and its computer implementation	
Composite model is a statistical distribution model made by piecing together two distributions at a			
certain threshold. It increasingly deems attention in actuarial loss modelling. In this study, we propose			
several variations of the composite model in which Weibull distribution is assumed up to the threshold			
and a family	and a family of Beta distribution beyond it. We also specify two of the composite model parameters in		
term of oth	er parameters of the model wh	ich in turn reduce the number of parameters and form a	
general construction rule for any two arbitrary distributions. The significance of such approach is further			
demonstrated with respect to computer implementation in R programming language. Finally the			

performance of the models is assessed via application to real loss data sets using information criteria based approach.

GI 1_4	Bayramoglu, Konul Kavlak	Hacettepe University, Ankara, Turkey
Title	The mean wasted life time of	a component of system

A reliability inspection model in which a component of a technical system has lifetime X and inspection time S is considered. It is assumed that X and S are random variables with absolutely continuous joint distribution function $F_(X,S)$ and the joint probability density function $f_(X,S)$. Firstly, we consider mean residual life function of the component under two different setups of inspection. Secondly, we consider an inspection model where at the inspection time the component is replaced with its spare regardless of whether the component is alive or failed at this time. Under condition that 0 < t < S < X we are interested in expected value of X - S, which is the mean wasted time of intact at time t component in the case if it will not be failed at inspection time, but will be replaced with the new one. Formula for mean wasted life time expressed in terms of $f_(X,S)$ and partial derivatives of $F_(X,S)$ is derived. Some examples with graphical representations are also provided.

GI 4_2	Bingham, Melissa	University of Wisconsin-La Crosse, USA
Title	Quantifying Spread in 3-D Rotation Data: Comparison of Nonparametric and Parametric	
	Techniques	

A measure of spread for 3-D rotation data, called the average misorientation angle, is introduced and bootstrapping will be used to develop confidence intervals for this measure. Existing parametric inference methods for estimating spread in 3-D rotations for the von Mises Uniform Axis-Random Spin and matrix Fisher distributions are then compared to the bootstrapping procedure through a simulation study. Based on the results on the simulation study, it is determined when the nonparametric or parametric techniques are preferred for different scenarios.

GI 3_1	Boulieri, Areti	Imperial College London, UK
Title	A Bayesian detection model for chronic disease surveillance: application to COPD	
	hospitalisation data	

Disease surveillance is an important public health practice, as it provides information which can be used to make successful interventions. Innovative surveillance systems are being developed to improve investigation of outbreaks, with the Bayesian models attracting a lot of interest. In this work, we propose an extension of a Bayesian hierarchical model introduced by Li et al. (2012), which is able to detect areas with an unusual temporal trend, and a simulation study is carried out to assess the performance of the model. The method is illustrated by application to chronic obstructive pulmonary disease (COPD) hospitalisation data in England at clinical commissioning group (CCG) level, from April 2010 to March 2011.

GI 9_5	Chacko, Manoj	University of Kerala, Trivandrum, India	
Title	Bayesian density estimation u	sing ranked set sample when ranking is not perfect	
In this pape	r, we consider a ranked set sam	pling in which an auxiliary variable X is used to rank the	
sample unit	s. A Bayesian method for estim	ating the underlying density function of the study variate Y	
using ranke	d set sample is proposed when	measurement of Xs are also available along with Ys. A Markov	
chain Monte	e Carlo procedure is developed	to obtain the Bayesian estimator of the density function of Y	
by assuming	g a parametric distribution for (2	X,Y), with the distribution of the parameters having a Dirichlet	
process pric	or. A simulation study is used to	evaluate the performance of the proposed method.	
GI 3_4	Daniels, John	Central Michigan University, USA	
Title	Variogram Fitting Based on the Wilcoxon Norm		
Within geos	Within geostatistics research, estimation of the variogram points has been examined, particularly in		
developing robust alternatives. The fit of these variogram points, which eventually defines the kriging			
weights, has not received the same attention from a robust perspective. This paper proposes the use of			
the non-linear Wilcoxon norm over weighted non-linear least squares as a robust fitting alternative. First,			
we introduce the concept of variogram estimation and fitting. Then, as an alternative to non-linear			
weighted least squares, we discuss the non-linear Wilcoxon estimator. Next, the robustness properties of			
the non-linear Wilcoxon are demonstrated using a contaminated spatial data set. Finally, under			

ICOSDA-2016

simulated conditions, increasing levels of contaminated spatial processes have their variograms points estimated and fit. In the fitting of these variogram points, both non-linear Weighted Least Squares and non-linear Wilcoxon fits are examined for efficiency. At all levels of contamination, the non-weighted Wilcoxon outperforms weighted Least Squares.

GI 8_4	Doray, Louis G.	Université de Montréal, Canada
Title	The Double Pareto Lognormal Distribution with Covariates and its Applications in Finance	
	and Actuarial Science	

We describe the double Pareto-lognormal distribution, present some new properties and show how the model can be extended by introducing explanatory variables. First, the double Pareto-lognormal distribution is built from the normal-Laplace distribution and some of its properties presented. The parameters can be estimated by using the method of moments or maximum likelihood. Next, explanatory variables are added to the model by using the mean of the normal distribution. The procedure of estimation for this model is also discussed. Finally, examples of application of the model in finance and fire insurance are illustrated and some useful statistical tests are conducted.

GI 7_4	El Ktaibi, Farid	Zayed University, Abu Dhabi, U.A.E.
Title	Change point detection for sta	tionary linear models and MBB applications

The problem of structural stability in a time series environment is a classical problem in statistics. In this presentation, we analyze the detection problem of a change in the marginal distribution of a stationary linear process using MBB techniques. Our model will incorporate simultaneously any change in the coefficients and/or the innovations of the linear process. Moreover, the change-point can be random and data dependent. Our results hold under very mild conditions on the existence of any moment of the innovations and a corresponding condition of summability of the coefficients. Lastly, the performance of our approach is demonstrated through simulations.

GI 2_4	Faisal, Shahla	Ludwig Maximilians Univeristy, Munich, Germany
Title	Improved Nearest Neighbors I	mputation for High-Dimensional Longitudinal Data

Longitudinal data often comes with missing values. These values cannot be ignored as it can result in loss of important information regarding samples. Therefore, imputation is a good strategy to overcome this problem. In this paper, we present a single imputation method based on weighted nearest neighbors that uses the information from other variables to estimate the missing values. These neighbors use the information from within the sample whose response is measured at different time points and between samples. The simulation results show that the suggested imputation method provides better results with smaller imputation errors.

GI 5_2	Ferrari, Silvia L.P. and Fumes, Giovana	University of Sao Paulo, Brazil
Title	Box-Cox symmetric distributions and applications to nutritional data	
Na introduce and study the Dev Covernmentation less of distributions, which is well for meridalism.		

We introduce and study the Box-Cox symmetric class of distributions, which is useful for modeling positively skewed, possibly heavy-tailed, data. The new class of distributions includes the Box-Cox t, Box-Cox Cole-Green, Box-Cox power exponential distributions, and the class of the log-symmetric distributions as special cases. It provides easy parameter interpretation, which makes it convenient for regression modeling purposes. Additionally, it provides enough flexibility to handle outliers. The usefulness of the Box-Cox symmetric models is illustrated in a series of applications to nutritional data.

GI 8_1Gleaton, JamesUniversity of North Florida, USATitleCharacteristics of Generalized Log-Logistic Families of Lifetime Distributions and Asymptotic
Properties of Parameter EstimatorsA brief overview of the generalized log-logistic (GLL) transformation (also called the odd log-
logistic transformation) group and the characteristics of lifetime distributions generated using
this type of transformation is presented. It is shown that, for a baseline distribution in an
exponential class, the MLE's for parameters of an exponentiated exponential-class (EE)
distribution are jointly asymptotically normal and efficient. A representation of the GLL-
exponential-class density as a series in which each term is proportional to an EE density is

2	MU	J
ENTR	AL MICHIGA	N

developed. Work on the asymptotic properties of the MLE's for the GLL-exponential-class			
distribution is in progress.			
GI 10_5	Godbole, Anant	East Tennessee State University, USA	
Title	Statistical Distributions in Com	binatorics: Moving from Intractability to Tractability	
In this talk, distribution probability f impossible t Poisson app	In this talk, we will present several examples of problems from combinatorics for which the entire distribution of a key variable X is of interest in its own right to distribution theorists, beyond the point probability $P(X=0)$, which is often the primary concern of combinatorialists. The distributions are either impossible to write in closed form, or available in an intractable closed form. The Stein-Chen method of		
GIS 1	Hodge Miriam	Lincoln University New Zealand	
Title	Comparison of liquefaction da	ta: An application of a logistic normal distribution in the	
nue	simplex sample space		
Liquefactior	i occurs when an earthquake lic	puefies water saturated soil and ejects it to the surface of the	
soil. This ph	ysical process is not well unders	stood. We address this uncertainty with a novel model	
selection str	ategy to evaluate models which	n include: ejecta originate from a combination of multiple	
layers of sec	liment; the source sediment lay	ver changed during ejection process; the source sediment	
layer could l	be deeper than the candidate sa	amples. The data are logistic normal and comprised of	
percentages	s of 120-plus grain size ranges. (Compositional analysis in the simplex space identified ejecta	
origins and	the result is confirmed by qualit	ative analysis.	
GI 4_3	Hoshino, Nobuaki	School of Economics, Kanazawa University, Japan	
Title	On the marginals of a random	partitioning distribution	
Kolchin's m	odel is a class of random partition	oning distributions of a positive integer, which includes the	
celebrated E	Ewens distribution. This type of	distributions defines the joint probability of the frequencies	
of frequenci	es, but the marginal distributio	n of the frequency of a given frequency is not straightforward	
to derive be	cause of its combinatorial natu	re. This talk motivates the derivation of such a marginal	
distribution	, and shows two methods: the f	irst one inverts factorial moments, and the second one	
exploits a fa	ct that Kolchin's model is the p	roduct of some conditional distributions.	
GI 5_3	Hristopulos, Dionissios T.	Technical University of Crete, Chania, Crete, Greece	
Title	A probability distribution function behavior	tion for finite-size systems with renormalized weakest-link	
We investig	ate weakest-link scaling in syste	ms with complex interactions expressed as ensembles of	
representat	ive volume elements (RVEs). Th	ne system survival probability function is expressed in terms of	
inter-depen	dent RVEs using a product rule.	For a finite number of RVEs, we propose the κ-Weibull	
distribution	. We discuss properties of the k	c-Weibull and present results from the analysis of	
experimenta	al data and simulations pertaini	ng to the return interval distributions of seismic data and of	
avalanches i	in fiber bundle models. Areas o	f potential applications involve the fracture strength of	
quasibrittle	materials, precipitation, wind s	peed, and earthquake return times.	
GI 3_2	Huang, Hsin-Hsiung	University of Central Florida, USA	
Title	New Mixed Gaussian Affine-In	variant Bayesian Clustering Method	
We develop	a clustering algorithm which do	pes not requires knowing the number of clusters in advance as	
well as it is rotation-, scale- and translation-invariant coordinatewise. A highly efficient split-merge Gibbs			
sampling algorithm is proposed. Using the Ewens sampling distribution as prior of the partition and the			
profile residual likelihoods of the responses under three different covariance matrix structures, we a			
posterior distribution on partitions. Our experimental results indicate that the proposed method			
outperforms other competing methods. In addition, the proposed algorithm is irreducible and aperiodic,			
so that the estimate is guaranteed to converge to the posterior distribution.			
GI 6_4	Jiang, Jiancheng	UNC Charlotte, USA	
Title	A new diversity estimator		
The maximum likelihood estimator (MLE) of Gini-Simpson's diversity (GS) index is widely used but suffers			
from large bias when the number of species is large relative to the sample size. We propose a new			

estimator of the GS index and show its unbiasedness. Asymptotic normality of the proposed estimator is established when the number of species in the population is finite and known, finite but unknown, and infinite. Our theory demonstrates that the proposed estimators share the same efficiency as the MLE for finite and known number of species and is more efficient than the MLE for other situations. Simulations demonstrate advantages of our estimators over the MLE, and an example for the extinction of dinosaurs endorses the use of our approach.

GI 5_5	Jureckova, Jana	Charles University in Prague, Czech Republic	
Title	Specifying the tails of a distrib	ution	
The first question induced by observed data is whether they are governed by a heavy or light tailed			
probability	probability distribution. Such decision is not always straightforward. When a specific test rejects the		
Gumbel hyp	oothesis of exponentiality of the	e tails, we do not have an information how heavy is really the	
distribution	. Instead of that, we can rather	verify the hypothesis whether the tails of a distribution are	
heavier tha	n a specific level, measured by t	he Pareto index. We will discuss some nonparametric tests of	
this hypoth	esis and compare them with the	e parametric likelihood ratio test on the parameters of	
generalized	Pareto distribution. The nonpa	rametric tests use the specific behavior of some sample	
statistics co	ming from a heavy-tailed distri	oution; this is of independent interest and can be extended	
e.g. to AR ti	me series. While the parametri	c test behaves better when the data really come from a	
generalized	Pareto distribution, the nonpa	rametric tests are typically better for other cases.	
GI 8_2	Karlis, Dimitris	Athens University of Economics and Business, Greece	
Title	On mixtures of multiple discre	ete distributions with application	
In this pape	r we present a model to fit app	ropriately data with a lot of periodic spikes in certain values.	
The motivat	tion comes from a dataset on th	ne number of absence from work. The data show clearly spikes	
in certain da	ays, implying the different scale	of doctor decisions. A new modeling approach, based on	
finite mixtu	res of multiple discrete distribu	tions of different multiplicities, is proposed to fit this kind of	
data. Multi	ple Poisson and negative binom	nial distributions are defined and used for modeling. A	
numerical a	pplication with a real dataset c	oncerning the length, measured in days, of inability to work	
after an acc	ident occurs is treated. The ma	in finding is that the model provides a very good fit when	
working we	ek, calendar week and month r	nultiplicities are taken into account. Properties of the derived	
model are e	examined together with estimat	ion and inference.	
GI 6_1	Lewin, Alex	Brunel University London, UK	
Title	Fuzzy multiple testing proced	ures for discrete test statistics	
Commonly used multiple testing procedures controlling the Family Wise Error Rate or the False Discovery			
Rate can be conservative when used with discrete test statistics. We propose fuzzy multiple comparison			
procedures	which give a fuzzy decision fun	ction, using the critical function of randomised p-values. We	
also define	adjusted p-values for the new r	nultiple comparison procedures. The method is demonstrated	
on four data	a sets involving discrete statistic	cs. A software package for the R language is available.	
GI 7_1	Liu, Sifan and Xie, Min-ge	Rutgers University, USA	
Title	Exact Inference on Meta-Anal	ysis with Generalized Fixed-Effects and Random-Effects	
	Models		
For meta-analysis with fixed-effects and random-effects models, conventional methods rely on Gaussian			
assumptions and/or large-sample approximations. However, when the number of studies is not large, or			
the sample sizes of individual studies are small, such assumptions and approximations may be inaccurate			
and lead to invalid conclusions. In this talk, we will present "exact" confidence intervals for the overall			
effect using all available data. Our proposals cover generalized models without Gaussian assumptions,			
and there is no need of approximation. Confidence distribution interpretations and numerical studies,			
including qu	uantifying the efficacy of BCG va	accine against tuberculosis, will be given for illustrations.	
GI 1_3	Mandrekar, Jay	Health Sciences Research, Mayo Clinic, USA	
Title	Statistical approach for the de	evelopment, prediction, and validation of a simple risk score:	
	application to a neurocritical	care study.	
Patients admitted to neurocritical care units often have devastating neurologic conditions and are likely			
candidates for organ donation after cardiac death. Improving our ability to predict the time of death			

after withdrawal of life-sustaining measures could have significant impact on rates of organ donation after cardiac death and allocation of appropriate medical resources. In the first part of the presentation, we will discuss using logistic regression and ROC analysis how we arrived at a prediction model based on a retrospective database. Next, we will discuss the validation of model and development of score using data from a multicenter prospective study.

GI 9_4	Maruyama, Yuzo	The University of Tokyo, Japan	
Title	Harmonic Bayesian prediction	under alpha-divergence	
We investig	ate Bayesian shrinkage method	s for constructing predictive distributions. We consider the	
multivariate	Normal model with a known c	ovariance matrix and show that the Bayesian predictive	
density with	respect to Stein's harmonic pr	ior dominates the best invariant Bayesian predictive density,	
when the di	mension is not less than three.	Alpha-divergence from the true distribution to a predictive	
distribution	is adopted as a loss function.		
GI 1_1	Matheson, Matthew	Johns Hopkins Bloomberg School of Public Health, USA	
Title	The Shape of the Hazard Func	tion: The Generalized Gamma and Its Competitors	
A large num	ber of distributions have been	proposed for parametric survival analysis. The generalized	
gamma, wit	h its flexible taxonomy of four o	distinct hazard shapes and ease of implementation, has	
proven to b	e one of the most popular. In se	earch of distributions with potentially richer hazard behavior,	
we have inv	estigated the exponentiated W	eibull, generalized Weibull, and beta-generalized gamma	
using both r	eal and simulated data. Somew	hat surprisingly, these distributions appear unable to	
significantly	improve on the flexibility of the	e generalized gamma for applications, with the generalized	
gamma beir	ng able to closely match almost	any parameter combination of the other three distributions.	
GI 4_1	Mi, Jie	Florida International University, USA	
Title	Instant System Availability		
In this talk,	we study the instant availability	A(t) of a repairable system using integral equation. We have	
proved initia	al monotonicity of the availabili	ty, and derived various lower bounds of A(t) and average	
availability.	The availabilities of two system	s are also compared with the help of stochastic ordering.	
GI 8_3	Minkova, Leda	Sofia University, Bulgaria	
Title	Distributions of order K in risk models		
The most used generalization of the counting process in the Risk model is a compound Poisson process.			
In this talk a	counting process with distribution	tions of order K is given. At first we introduce the compound	
birth proces	s of order K. As a particular cas	e we consider the compound Poisson process. As examples,	
the Poisson	process of order K, and two typ	bes of Polya-Aeppli processes of order K are given. Some	
functions re	lated to corresponding risk mo	dels are analyzed. The derivation of the joint distribution of	
the time to	ruin and the deficit at ruin as w	ell as the ruin probability are given. We discuss in detail the	
particular ca	particular case of exponentially distributed claims.		
GI 10_4	Nolan, John	American University, USA	
Title	Title Classes of generalized spherical distributions		
A flexible cla	ass of multivariate generalized s	spherical distributions with star-shaped level sets is	
developed. Tools from computational geometry and multivariate integration are used to work with			
dimension above two. The R package gensphere allows one to compute multivariate densities and			
simulate from such distributions.			
GI 4_5	Ozturk, Omer	The Ohio State University, USA	
Title	Ratio estimators based on ran	ked set sampling in survey sampling	
In this talk, we consider the ratio estimator in a finite population setting in a ranked set sampling (RSS)			
design when the sample is constructed without replacement. We show that the proposed ratio estimator			
is slightly biased, but the amount of bias is smaller than the bias of the simple random sample (SRS) ratio			
estimator. We provide an explicit expression for the approximated mean square error of the ratio			
estimator and for its precision relative to other competing estimators. We show that the new estimator			
has substantial amount of improvement in efficiency with respect to SRS estimator. We apply the			

proposed estimator to estimate apple production in Marmara Region of Turkey in a finite population			
setting.			
GI 3_5	Paul, Rajib	Western Michigan University, USA	
Title	Real Time Estimation of ILI (In	luenza Like Illnesses) Rates Using Dynamic Downscaling	
Despite nov	el advances in surveillance of fl	u trends, the real-time daily estimates of ILI cases are often	
unavailable.	The community health departr	nents collect daily information on reported respiratory and	
constitution	al symptoms (for example, feve	er, headache, cough etc.). Google flu trends provide weekly	
estimates pe	er one hundred thousand peop	e. We develop a Bayesian hierarchical model for dynamic	
downscaling	g of ILI rates on daily scale fusing	g these two datasets. We also incorporate environmental	
factors, such	n as, temperature and humidity	. A sequential Monte Carlo algorithm is developed for faster	
computation	 Our model is tested and valid 	ated using Michigan data over the years 2009-2013.	
GI 9_2	Peer, Bilal Ahmad	Islamic University of Science & Technology, Awantipora,	
Title	Devenien englasie of missionis	Pulwama (J&K), India	
litie	functions	led generalized Power Series distributions under different loss	
In certain ex	perimental investigations invol	ving discrete distributions external factors may induce a	
measureme	nt error in the form of misclass	fication. For instance, a situation may arise where certain	
values are e	rroneously reported; such a situ	uation termed as modified or misclassified has been studied	
by many res	earchers. Cohen (1960) studied	misclassification for Poisson and binomial random variables.	
In this paper	r, we discuss misclassification for	or the more general class of discrete distributions, the	
generalized	power series distributions (GPS	D), where some of the observations corresponding to x=c+1;	
c≥0 are erro	neously observed or at least re	ported as being x=c with probability α . This class includes	
among otne	rs the binomial, negative binom	hial, logarithmic series and Poisson distributions. We derive	
the Bayes es	stimators of parameters of the	misclassified generalized power series distributions under	
different los	s functions. The results obtained	d for misclassified GPSD are then applied to its particular	
illustrate the	spacing binormal, logarithmic se	nes and Poisson distributions. An example is provided to	
estimators		est is done using the moment, maximum internood and bayes	
GI 5_4	Pérez-Casany, Marta	Technical University of Catalonia, Spain	
 Title	Random-Stopped Extreme dis	tributions	
The distribu	The distribution of the maximum (minimum) of a random number of independent and identically		
distributed	random variables is characterize	ed by means of their probability generating function, and a	
duality prop	erty between the two sets of d	istributions is derived. These distributions appear in a natural	
way as data	collection mechanisms, similar	to the Stopped-sum distributions. When the sample size is	
geometrical	ly distributed, one obtains the I	Marshall-Olkin transformation of the sampled distribution as a	
particular case. Special attention will be paid to the case where sample size is Poisson distributed, since			
it is the one with the most practical appeal.			
GI 6_3	Potgieter, Cornelis	Southern Methodist University, USA	
Title	Goodness-of-fit testing for ger	neralized skew-symmetric distributions	
Generalized	skew-symmetric (GSS) distribu	tions are very flexible and can model a wide variety of shapes.	
GSS distributions have a pdf that is the product of a symmetric pdf and a skewing function. Modeling is			
usually done assuming a specific symmetric component. It is therefore of interest to consider goodness-			
of-fit testing for whether this symmetric component has been correctly specified. A test based on the			
empirical characteristic function has already been proposed in the literature. A new test based on the			
quantile function of the squared distribution is also proposed here. These two tests are compared.			
GI 9_1	Ross, Sheldon	University of Southern California, USA	
Title	Friendship Paradox and Friend	ship Network Model	
The friendship paradox says that "your friends tend to have more friends than you". We explore this			
paradox and	paradox and then suggest a model for a friendship network.		
GI 2_2	Ruth, David M.	United States Naval Academy, USA	

	9000	DA-2016 Brock
Title	An approach to the multivaria	te two-sample problem using classification and regression
	trees with minimum-weight s	panning subgraphs
The multiva	riate two-sample problem is or	e of continued interest in statistics. Approaches to this
problem usi	ually require a dissimilarity mea	isure on the observation sample space; such measures are
typically res	tricted to numeric variables. Ir	order to accommodate both categorical and numeric
variables, w	e use a new dissimilarity measi	are based on classification and regression trees. We briefly
discuss this	new measure and then employ	it with a recently-developed graph-based multivariate test.
New improv	rements to this test are discuss	ed, test performance is examined via simulation study, and
test efficacy	is investigated using real-work	d data.
GI 7_2	Schick, Anton	Binghamton University, USA
Title	Estimation of the error distrib	ution function in a varying coefficient regression model
This talk dis	cusses estimation of the error of	distribution function in a varying coefficient regression model.
Three estim	ators are introduced and their	asymptotic properties described by uniform stochastic
expansions.	The first estimator is a residua	l-based empirical distribution function utilizing an under-
smoothed lo	ocal quadratic smoother of the	coefficient function. The second estimator exploits the fact
that the err	or distribution has mean zero. I	t improves on the first estimator, but is not yet efficient. An
efficient est	imator is obtained by adding a	stochastic correction term to the second estimator.
GI 1_2	Song, Xinyuan	The Chinese University of Hong Kong, Hong Kong
Title	Analysis of proportional mear	residual life model with latent variables
In this study	, we propose a proportional m	ean residual life (MRL) model with latent variables to examine
the effects of	of potential risk factors on the I	MRL function of ESRD in a cohort of Chinese type 2 diabetic
patients. Th	e proposed model generalizes	conventional proportional MRL models to accommodate
latent risk fa	actors. We employ a factor ana	lysis model to characterize latent risk factors via multiple
observed va	riables. We develop a borrow-	strength estimation procedure incorporating EM algorithm
and the cor	rected estimating equation app	roach. The empirical performance of the proposed
methodolog	gy is evaluated via numerical stu	udies.
GI 6_5	Stehlik, Milan	Johannes Kepler University, Linz, Austria
Title	Exact distributions of LR tests	and their applications
During the t	alk we introduce exact statistic	al procedures based on likelihood ratio. Also practical
examples w	ill be given. We introduce exac	t likelihood ratio tests in exponential family and for a
generalized	gamma distribution and its pro	perties. We will derive general forms of distributions for exact
likelihood ra	atio test of the homogeneity an	d scale. Applications and illustrative examples (missing and
censored data, mixtures) will be given. Geometry of life time data will be discussed and related to I-		
divergence	decomposition. Small samples	testing for frailty through homogeneity test will be discussed.
We will provide the methodology for exact and robust test for normality.		
GI 3_3	Sun, Ying King	Abdullah University of Science and Technology, Saudi Arabia
Title	A Stochastic Space-time Mode	el for Intermittent Precipitation Occurrences
Modeling a precipitation field is challenging due to its intermittent and highly scale-dependent nature.		
Motivated by the features of high-frequency precipitation data from a network of rain gauges, we		
propose a threshold space-time t random field (tRF) model for 15-minute precipitation occurrences. This		
model is constructed through a space-time Gaussian random field (GRF) with random scaling varying		
along time or space and time. It can be viewed as a generalization of the purely spatial tRF, and has a		
hierarchical representation that allows for Bayesian interpretation. Developing appropriate tools for		
evaluating precipitation models is a crucial part of the model-building process, and we focus on		
evaluating whether models can produce the observed conditional dry and rain probabilities given that		
some set of neighboring sites all have rain or all have no rain. These conditional probabilities show that		
the proposed space-time model has noticeable improvements in some characteristics of joint rainfall		
occurrences for the data we have considered.		
GI 2_5	Sylvan, Dana	Hunter College, CUNY, USA
Title	Exploration and visualization	of space-time data with complex structures

CENTRAL MICHIGAN UNIVERSITY	9000	DA-2016 Brock Diversity
GI 2_3	Zahid, Faisal Maqbool and	Ludwig Maximilians University, Munich, Germany
	Heumann, Christian	
Title	Title Multiple Imputation using Regularization	
Multiple imputation (MI) is an increasingly popular approach for filling missing data with plausible values.		
In case of large number of covariates with missing data, existing MI softwares are likely to perform		
poorly or fail. We are proposing an MI algorithm based on regularized sequential regression models.		
Each variable (e.g., normal, binary, Poisson etc.) is imputed using its own imputation model. The		
proposed approach performs well even with large number of covariates and small samples. The results		
are compared with the existing softwares like mice, VIM, and Amelia in simulation studies. The results		
are compared using Mean Squared Imputation Error (MSIE) and Mean Absolute Imputation Error (MAIE).		

Abstracts for Student Posters (Alphabetically Ordered)

All Student Poster Presentations are in **Canadian/A Room** The student posters must be posted by 3:00 pm on October 15

The student authors must be at their posters from 5:45 pm – 6:30 pm, October 15

It is assumed the first author is the presenter, unless an asterisk (*) is used to indicate the presenter. The affiliation listed is the presenter's affiliation only.

Authors	Aldeni, Mahmoud	Central Michigan University, USA
Title	Families of distributions arising	from the quantile of generalized lambda distribution
Statistical distributions play an important role in theory and applications, which are used to fit, model		
and describ	e real world phenomena. For this	reason, developing new and more flexible univariate
statistical di	stributions has received an increa	asing amount of attention over the last two decades. In this
work, the cl	ass of T-R{generalized lambda} fa	milies of distributions based on the quantile of generalized
lambda dist	ribution has been proposed using	the T-R{Y} framework. Different choices of the random
variables T a	and R naturally lead to different fa	amilies of the T-R{generalized lambda} distributions. Some
general pro	perties of these families of distrib	utions are studied. Four members of the T-R{generalized
lambda} fan	nilies of distributions are derived,	namely, the uniform-exponential{generalized lambda}, the
normal-unif	orm{generalized lambda}, the Pai	reto-Weibull{generalized lambda}and the log-logistic-
logistic{gen	eralized lambda}. The shapes of the	nese distributions can be symmetric, skewed to the left,
skewed to t	he right, or bimodal. Two real life	data sets are applied to illustrate the flexibility of the
distribution	s and the results are compared w	ith the results from some existing distributions.
Authors	Arapis, Anastasios N.	University of Patras, Greece
Title	Joint distribution of k-tuple stati	stics in zero-one sequences
Let a seque	nce of random variables with valu	es (zero-one) ordered on a line. We consider runs of one of
length large	r than or equal to a fixed number	. The statistics denoting the number of such runs, the
number of ones in the runs and the distance between the first and the last run in the sequence, are		
defined. The paper provides, in a closed form, the exact joint distribution of these three statistics given		
that the number of such runs in the sequence is at least equal to two. The study is first developed on		
sequences of independent and identically distributed random variables and then is extended to		
exchangeable (symmetrically dependent) sequences. Numerical examples illustrate further the		
theoretical results.		
Authors	Chaba, Linda and Omolo, Berna	rd* University of South Carolina-Upstate, USA
Title	Using copulas to select prognost	tic genes in melanoma patients
We developed a copula model for gene selection that does not depend on the distributions of the		
covariates, except that their marginal distributions are continuous. A comparison of the ability to control		
for the FDR of the copula-based model with the SAM and Bayesian models is performed via simulations.		

Simulations indicated that the copula-based model provided a better control of the FDR and yielded a more prognostic signature than the SAM and Bayesian model-based signatures. These results were validated in three publicly-available melanoma datasets. Relaxing parametric assumptions on microarray data may yield gene signatures for melanoma with better prognostic properties.

data may yield gene signatures for melanoma with better prognostic properties.		
Authors	Cordero, Osnamir Elias Bru,	National University of Colombia in Medellin, Colombia
	Jaramillo, Mario César and	
	Canal, Sergio Yáñez	
Title	Random Number Generation fo	r a Survival Bivariate Weibull Distribution
A bivariate	survival function of Weibull distril	bution is presented as Model VI(a)-5 by Murthy, Xie and
Jiang. It is s	hown that the model corresponds	s to a Gumbel-Hougaard survival copula evaluated at two
Weibull sur	vival marginal. Their properties ar	e studied to compare three method of random generation
from that d	istribution. The CD-Vines method	ology is used as the base reference for the purpose of
methodolog	gy evaluation.	
Authors	Chan, Stephen	University of Manchester, UK
Title	Extreme value analysis of electric	icity demand in the UK
For the first	time, an extreme value analysis o	of electricity demand in the UK is provided. The analysis is
based on th	e generalized Pareto distribution	. Its parameters are allowed to vary linearly and sinusoidally
with respec	t to time to capture patterns in th	ne electricity demand data. The models are shown to give
reasonable	fits. Some useful predictions are §	given for the value at risk of the returns of electricity
demand.		
Authors	De Silva, Kushani	Clarkson University, USA
Title	Bayesian Approach to Profile Gr	adient Estimation using Exponential Cubic Splines
Reliable pro)file and profile gradient estimate	s are of utmost important for many physical models. In most
situations. t	the derivative is either difficult to	compute or it is impossible to obtain by direct
measureme	ent. Most importantly, for discret	e noisy measurements, the differentiation magnifies the
random err	or buried in the measurements. e	specially for high-frequency components. Estimating the
derivative f	rom point-wise noisy measureme	nts is well known as an ill-posed problem. A Bayesian recipe
based on a	model using exponential cubic sp	line is implemented to estimate the profile gradient of
discrete noi	isy measurements. The spline mo	del is formulated in the space where the quantity (gradient)
to be mode	led is continuous, instead of being	g placed in the data space. The gradient profile is well-
determined	by the mean value of the posteri	or distribution calculated using Markov Chain Monte Carlo
sampling te	chnique.	Ũ
Authors	Darkenbayeva, Gulsim	Al-Farabi Kazakh National University, Kazakhstan
Title	Convergence of some quadratic	forms used in regression analysis
We conside	r convergence in distribution of t	wo quadratic forms arising in unit root tests for a regression
with a slow	ly varying regressor. The error ter	m is a unit root process with linear processes as
disturbances. The linear processes are non-causal short-memory with independent identically distributed		
innovations	Our results generalize some stat	ements from Phillips and Solo (1992).
Authors	Hamed, Duha	Winthrop University, USA
Title	T-Pareto family of distributions:	Properties and Applications
Six families of generalized Pareto distribution were defined and studied using the T-R{Y} framework will		
be presented with some of their properties and special cases including the Lorenz and Bonferroni curves.		
The flexibility of two members of these generalized families namely the normal-Pareto{Cauchy} and the		
exponentiated-exponential-Pareto{Weibull} distribution are assessed by applying them to a couple of		
real data sets and comparing their results with other distributions.		
Authors	Kang, Kai	The Chinese University of Hong Kong, Hong Kong
Title	Bayesian semiparametric mixed	hidden Markov models
In this study	In this study, we develop a semiparametric mixed hidden Markov model to analyze longitudinal data. The	
proposed model comprises a parametric transition model for examining how potential predictors		

influence the probability of transition from one state to another and a nonparametric conditional model

for revealing the functional effects of explanatory variables on outcomes of interest. We propose a Bayesian approach that combines Bayesian P-splines and MCMC methods to conduct the statistical analysis. The empirical performance of the proposed methodology is evaluated via simulation studies. An application to a real-life example is presented.

Authors	Krutto, Annika	University of Tartu, Estonia
Title	Estimation in Univariate Stable I	Laws
In the study	four-parameter stable laws are c	onsidered. The explicit representations for the densities of
, stable laws	in terms of elementary functions	are unknown and that complicates the estimation of
parameters	. All stable laws can be uniquely e	xpressed by their characteristic function. The motivation for
this study a	rises from an estimation procedu	re based on the empirical characteristic function and known
as the meth	od of moments. In this study an a	amended and more fruitful version of the procedure is
proposed, e	xtensive simulation experiments	over the parameter space are performed.
Authors	Mdziniso, Nonhle Channon	Central Michigan University, USA
Title	Odd Pareto Families of Distribut	ions for Modeling Loss Payment Data
A three-par	ameter generalization of the Pare	to distribution is presented to deal with general situations
in modeling	loss payment data with various s	hapes in the density function. This generalized Pareto
distribution	will be referred to as the Odd Pa	reto family since it is derived by considering the
distribution	s of the odds of the Pareto and in	verse Pareto families. Various statistical properties of the
Odd Pareto	distribution are provided, includi	ng hazard function and moments. Loss payment data is used
to illustrate	applications of the Odd Pareto di	stribution. The method of maximum likelihood estimation is
proposed for	or estimating the model paramete	ers.
Authors	Nitithumbundit, Thanakorn	University of Sydney, Australia
Title	Maximum leave-one-out likeliho	ood estimation for location parameter of unbounded
	densities	
Maximum li	kelihood estimation of a location	parameter fails when the density have unbounded mode.
An alternati	ve approach is considered by leav	ing out a data point to avoid the unbounded density in the
full likelihoo	od. This modification gives rise to	the leave-one-out likelihood. We propose an
expectation	/conditional maximisation (ECM)	algorithm which maximises the leave-one-out likelihood.
Podgórski a	nd Wallin (2015) showed that the	estimator which maximises the leave-one-out likelihood is
consistent a	nd super-efficient. To investigate	other asymptotic properties such as the optimal rate of
convergenc	e and asymptotic distribution, we	use our proposed algorithm on simulated data sets while
also evaluat	ing the accuracy of our estimator	
Authors	Odhiambo, Collins Ojwang	Strathmore University, Kenya
Title	A Smooth Test of Goodness-of-f	it for the Weibull Distribution: An Application to an HIV
	Retention data	
In this pape	r, we propose a smooth test of go	oodness-of-fit for the two-parameter Weibull distribution.
The smooth test described here is a score test that is an extension of the Neyman's smooth tests.		
Simulations are conducted to compare the power of the smooth test with three other goodness-of-fit		
tests for the Weibull distribution against the gamma and the lognormal alternatives. Results show that		
the smooth tests of order three and four are more powerful than the other goodness-of-fit tests. For		
validation, we apply the goodness-of-fit procedure to retention data in an HIV care setting in Kenya.		
Authors	Selvitella, Alessandro	McMaster University, Canada
Title	The Simpson's Paradox in Quant	tum Mechanics
In probability and statistics, the \emph{Simpson's paradox} is a paradox in which a trend that appears in		
different groups of data disappears when these groups are combined, while the reverse trend appears		
for the aggregate data. In this paper, we give some results about the occurrence of the Simpson's		
Paradox} in Quantum Mechanics. In particular, we prove that the \emph{Simpson's Paradox} occurs for		
solutions of the \emph{Quantum Harmonic Oscillator} both in the stationary case and in the non-		
stationary case. In the non-stationary case, the \emph{Simpson's Paradox} is persistent: if it occurs at any		
time \$t=\tilde{t}\$, then it occurs at any time \$t\neq \tilde{t}\$. Moreover, we prove that the		
\emph{Simpson's Paradox} is not an isolated phenomenon, namely that, close to initial data for which it		

occurs, there are lots of initial data (a open neighborhood), for which it still occurs. Differently from the case of the \emph{Quantum Harmonic Oscillator}, we also prove that the paradox appears (asymptotically) in the context of the \emph{Nonlinear Schr\"{o}dinger Equation}, but at intermittent times.

Authors	Yan, Hongxuan	University of Sydney, Australia
Title	Modeling Financial Time Series of Count Data with Long Memory	
This paper proposes to incorporate Gegenbauer Autoregressive Moving Average (GARMA) structure and		
a special case of it called Autoregressive Fractionally Integrated Moving Average (ARFIMA) structure into		
the mean function of a count distribution, Generalized Poisson (GP) distribution. This distribution		
displays equi-, over- and under -dispersion features, enhancing modeling feasibility. Besides, the error		
terms in the mean function are defined using the parameter- and observation-driven state space		
approach. Furthermore, Bayesian approach is implemented for parameter estimation through the user		
friendly Bayesian R module Rstan. DIC and WAIC are applied as two main model selection criteria. The		
models are demonstrated through the U.S. Commodity Futures Trading Commission data.		
Authors	Zhang, Yuanyuan	University of Manchester, UK

 Authors
 Zhang, Yuanyuan
 Onversity of Wanchester, ox

 Title
 New bivariate wrapped distributions

 There are not many models for bivariate directional data. Here, we introduce more than ten new bivariate wrapped distributions. For each distribution, expressions are given for the means, covariances, and five correlation coefficients.

Ahmed, Ejaz	Amezziane, Mohamed
Cheng, Chin-I	Cooray, Kahadawala
John Daniels	Felix Famoye
Carl Lee	Madhuka Samanthi
Jungsywan Sepanski	Dan Wang

Scientific Program Committee		
Members	Affiliation	
Ahmed, Ejaz (Co-Chair)	Brock University, Canada	
Akinsete, Alfred	Marshall University, USA	
Alzaatreh, Ayman	Nazarbayev University, Kazakhstan	
Amezziane, Mohamed	Central Michigan University, USA	
Cheng, Chin-I	Central Michigan University, USA	
Coelho, Carlos A.	Universidade Nova de Lisboa, Portugal	
Cooray, Kahadawala	Central Michigan University, USA	
De Oliveira, Victor	University of Texas at San Antonio, USA	
Evans, Michael	University of Toronto, Canada	
Famoye, Felix (Co-Chair)	Central Michigan University, USA	
Ferreira, Marco A. R.	Virginia Tech, USA	
Furman, Edward	York University, Canada	
Gao, Xiaoli	University of North Carolina, Greensboro, USA	
Huang, Mei-Ling	Brock University, Canada	
Lee, Carl (Co-Chair)	Central Michigan University, USA	
McNicholas, Paul	McMaster University, USA	
Ng, Hon Keung Tony	Southern Methodist University, USA	
Oluyede, Broderick O.	Georgia Southern University, USA	
Provost, Serge B.	The University of Western Ontario, Canada	
Richter, Wolf-Dieter	University of Rostock, Canada	
Sarabia, Jose Maria	University of Cantabria, Spain	
Sellers, Kimberly	Georgetown University	
Stehlik, Milan	Johannes Kepler University, Austria	
Xu, Xiaojian	Brock University, Canada	
Yi, Grace	University of Waterloo, Canada	

Thank you very much for your participation in

ICOSDA 2016

Participants from 28 different countries

Hosted by

Central Michigan University, USA and Brock University, CANADA