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T o teach mathematics as a connected system of
concepts, we must have a “shift in emphasis

from a curriculum dominated by memorization of
isolated facts and procedures and by proficiency
with paper-and-pencil skills to one that emphasizes
conceptual understandings, multiple representa-
tions and connections, mathematical modeling, and
mathematical problem solving,” according to the
NCTM’s Curriculum and Evaluation Standards for
School Mathematics (1989, 125). Too often, educa-
tors spend time teaching skills. As a result, little
time remains to concentrate on concepts that are
essential to understanding mathematics. Students
should not be forced to play with symbols on a piece
of paper; rather, they should be allowed to play
with ideas that lead to conceptual understanding.
Manipulatives and technology encourage discovery.
Later, some of the desirable skills can be addressed
in a remarkably shorter time frame than tradition-
al instruction usually requires (Heid 1992).

Many times, as a first introduction to proof by
induction, students are asked to prove

n�i = n(n + 1) .
i=1 `` 2̀̀ ``

Why would students feel compelled to prove this
summation? It likely holds little meaning for them.
To motivate students, a teacher could discuss the
following problem, used by Thompson (1985):

Ten blocks are needed to make a staircase of four steps
[as shown in fig. 1]. How many blocks are needed to
make ten steps? How many blocks are needed to make
fifty steps?

Pólya (1957) suggests that a first step in solving
a problem is to be certain that the problem is
understood. Manipulatives make a great starting

point from which students can examine the process
used in figuring the number of blocks needed to
build a staircase of a certain size. The act of placing
blocks or color tiles to build the figure can be of
great benefit in understanding a process by which
the number of blocks can be determined. For exam-
ple, in building a staircase of height 3, the student
obtains a figure containing six blocks (see fig. 2a).
To then continue and build a staircase of height 4,
all that he or she needs is a row of four blocks to
place on the bottom (see fig. 2b). The act of placing
the blocks helps the student understand the process.

Once the pattern of 1 + 2 + 3 + . . . + n as an
expression for the number of blocks in a staircase of
height n is recognized, the “brute force” process can
be applied to calculate the number of blocks needed
for a staircase of height, say, 1000. Of course, this
approach is not necessarily a desirable method for
finding a solution.
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Fig. 1
Four-step staircase
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At this point, technology, such as the TI-83
graphing calculator, can be used to experiment with
different limits of the summation (see fig. 3a–e).
However, the machine registers an error for a fairly
small upper index of 1000 (see fig. 3e). Even a pow-
erful machine like the TI-92 takes quite long to
evaluate

100 000�i.
i=1

This slowness gives the teacher the opportunity to
pose the problem of how to find a nice formula for
the sum of the first n positive integers, thus elimi-
nating the long wait for the answer.

better acceptance in the mind of the student.
Manipulatives can help students discover the
process that leads to an answer. However, in look-
ing for mathematical relationships, students often
find a graphical approach useful. From a more
graphical approach, the curve-fitting capabilities of
graphing calculators—such as the TI-83, the TI-82,
or even the TI-80—can supply another mode of
exploration. For example, consider the list of data
in figure 4a, where L1 represents the height of the
staircase and L2 represents the number of blocks
needed. The typical graphing calculator contains
several regression options from which to choose for
curve fitting (see fig. 4b).

(a) (b)

Fig. 2
Extending the three-step staircase to four steps

Teachers can motivate students to discover many
different representational forms for solving prob-
lems. Lapp (1995) suggests that confirming an
answer across several representational forms yields

(a) (b)

(c) (d)

(e)

Fig. 3
Using the TI-83 to find the number of blocks

in a staircase of height 1000

For example, the quadratic regression command
yields the expression 0.5x2 + 0.5x for the general
staircase of height x. The graph (fig. 5a) and the
algebraic expression (fig. 5b) of this function are
given as displayed on the TI-83. Further investiga-
tion with a cubic (fig. 5c) and a quartic (fig. 5d)
regression yields algebraic expressions for the func-
tions. Note that the cubic and quartic expressions
contain x4, x3, and constant coefficients that are
either zero or essentially zero. If these terms are
ignored, the machine gives the same expression for

(a) (b)
Data table Regression options

Fig. 4

(a) (b)
Graph of 0.5x2 + 0.5x Quadratic algebraic 

expression

(c) (d)
Cubic algebraic expression Quartic algebraic 

expression

Fig. 5
Regression options for staircase of height x
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all instances of curve fitting, namely, 0.5x2 + 0.5x,
that is,

x(x + 1) .
`̀ 2̀̀ `̀

Once an apparent pattern emerges, the students
can be asked to prove that it will always hold. Not
all students will be ready to give a formal proof by
mathematical induction or some other means. At the
early stages, a convincing geometric argument alone
may suffice. Letting the students revisit the manipu-
latives is often helpful in getting them to construct a
reasonable argument. Consider a specific case in
which the staircase has height 4. By constructing two
such staircases (fig. 6a) and fitting them together
to form a rectangle (fig. 6b), we can argue that the
dimensions in the nth case will always be n on one
side and n + 1 on the other side, which gives the total
number of blocks in the rectangle as n(n + 1). But
since only half of this rectangle is desired, we get

n(n + 1) .
`̀ 2̀̀ `̀

It is important to consider the other representa-
tional forms for solving this particular problem per-
mitted by such new technologies as the TI-92. A
representation for extending this investigation to
the sum of squares uses matrices. Since the sum of
the first n positive integers yields a quadratic
closed-form formula, might the sum of squares
yield a cubic closed-form formula? To investigate,
we can sum to several upper indices of 

n�i2

i=1

and generate data points of (10, 385), (15, 1240),
(20, 2870), and (25, 5525). If we assume that the
formula is of the form ax3 + bx2 + cx + d, we can
construct a linear system in which the new “vari-
ables” are the coefficients of the general cubic.

a • 1000 + b • 100 + c • 10 + d = 385
a • 3375 + b • 225 + c • 15 + d = 1240
a • 8000 + b • 400 + c • 20 + d = 2870

a • 15625 + b • 625 + c • 25 + d = 5525

Using a matrix representation for the system, we
get

 1000 100 10 1   a   385 
     
 3375 225 15 1   b   1240 
    =   .
 8000 400 20 1   c   2870 
     
 15625 625 25 1   d   5525 
We next use the matrix capabilities of the TI-92

to solve the system. Storing the coefficient matrix
in A and the column matrix on the right-hand side
of the equation in B, we get a solution by evaluat-

(a) (b)

Fig. 6
Geometric argument
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Another explanation frequently given by stu-
dents is the “triangle approach.” In looking at a
staircase as a triangle with jagged edges (fig. 7),
we can argue that the “area” of the staircase, which
corresponds to the number of blocks, can be deter-
mined by the area of the triangle, 

1 n • n = 1 n2,
2 2

along with half the blocks along the diagonal that
were cut off to form the triangle. Since n blocks are
along the diagonal, the number of blocks needed to
construct a staircase of height n would be given by 

1 n2 + 1 n = n(n + 1) .
2 2 `` 2̀```

Fig. 7
Triangle approach
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The important aspect of this investigation is the
merging of representations. The graphical repre-
sentation afforded by technology aids in the search
for patterns. However, the use of other representa-
tions, such as physical or iconic models, can play an
important role in the construction of a logical argu-
ment that explains the observed pattern.
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ing A–1 • B (fig. 8). The result suggests that the
cubic we are seeking is given by 

1 x3 + 1 x2 + 1 x.
3 2 6

Using the factor command (fig. 9), we get the form
more commonly expressed as

x(x + 1)(2x + 1) .
``````6``````

The beauty of the matrix treatment of this prob-
lem is that it allows the student to extend polyno-
mial curve fitting beyond the normal choices offered
by most graphing calculators. The TI-92 and TI-83
calculators have “canned” polynomial curve-fitting
capabilities up through a general quartic equation.
The use of matrices allows students to try higher
degree polynomials provided that the number of
data points is sufficient to produce a nonsingular
coefficient matrix. Even though other calculators,
such as the TI-83, also allow the use of matrices,
the advantage of the TI-92 is that it keeps solutions
in rational form rather than as the decimal approx-
imations used by less powerful machines.

Discovering a formula modeled through an inves-
tigative method gives the student a compelling rea-
son to seek a proof confirming the formula. As with
the previous example of 

n�i,
i=1

we wish to motivate students to produce a proof by
manipulatives of our discovered formula, 

n�i2 = n(n + 1)(2n + 1) .
i=1 ``````6``````

One method, proposed by Siu (1984), is given in fig-
ure 10. This approach is more complicated than
the physical proof offered previously for

n�i.
i=1

As a result, students may have a more difficult time
“discovering” it on their own. Some prompting by
the teacher may be necessary. However, the proof
given by Siu does use strategies found in both the
“triangle” approach and the “two-staircase”
approach presented previously for 

n�i.
i=1

Students do not often have an opportunity to
experience what many mathematicians do regular-
ly, that is, look for concepts on the basis of pat-
terns, and this approach will allow them to see the
mathematical process firsthand. This investigation
introduces the students to the process of conjecture

Fig. 8
Using the matrix capabilities of the TI-92

Fig. 9
Using the factor command on the TI-92

Fig. 10
Proof without words (Siu 1984)
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followed by proof, and the combination of manipula-
tives and technology allows this process to be
approached earlier than traditionally thought
appropriate.
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