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Linked Representations in Algebra: 
Developing Symbolic Meaning

The use of symbols provides math-
ematics with enormous power. 
From the learner’s perspective, 

however, symbols can present enormous 
obstacles. Using symbols to encapsulate 
big ideas allows readers to see various 
stages of arguments within one field of 
view. However, for many learners, 
unpacking symbolization poses a sig-
nificant hurdle in the development of 
conceptual understanding. Here we 
compare and contrast symbolic reason-
ing approaches that algebra students 
used when solving equations.

What is a root of an equation, and 
how is it related to various representa-
tions? More generally, what does it 
mean for a value to be a solution to an 
equation? These are standard questions 
that we expect students to be able to 
address and discuss. Although many 
students may be able to solve equations, 
far too many have limited conceptual 
understanding and rely primarily on 
procedural knowledge of the equation-
solving process.

AARON’S SOLUTION TO  
A QUADRATIC EQUATION
Consider the following situation in 
which a student, Aaron, tried to solve 

the quadratic equation below during an 
interview: 

(x – 2)(x + 3) = 6 (no graph given)

Aaron began by setting each factor 
equal to 6 (see fig. 1). Here he applied a 
memorized procedure that he overgener-
alized from previous experiences of solv-
ing quadratic equations by setting each 
factor equal to zero. After finding solu-
tions, Aaron said, “I don’t know if those 
approaches are right . . . I’d have to know 
exactly where we are at,” indicating that 
he was unsure of his process. When ques-
tioned further, he stated that his process 
might change depending on “if we’re 
trying to find where it’s going to cross on 
the x-axis.” In elaborating, Aaron stated 
that if he were trying to find points on a 
graph, then he would view the process 
differently, and he referred to another 
problem that included a graph along with 
an equation (see fig. 2). However, when 
he described how his process would 
change, he repeated the same algebraic 
steps and changed only the number that 
he would set each factor equal to (4 
instead of 6) (see fig. 3).

As Aaron continued to solve the new 
problem, he noticed an inconsistency:
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Aaron: Uh-oh, something’s not right 
. . . the solutions [don’t] match . . . 
[pressed to explain] [I] got 5 and 2, and 
I would expect them to match –2 and 
1 [pointing to the x-intercepts on the 
graph]. Um, just because that’s where 
they cross. 

At first, it appeared that Aaron had 
caught his conceptual mistake, but he 
had simply replaced an algebraic rule 
with a graphical one (looking for the 
points where the graph crosses the 
x-axis). Aaron continued to try to resolve 
his algebraic solutions with his expecta-
tions that these solutions should corre-
spond to the x-intercepts from the graph, 
but he was unsuccessful and gave up.

Why was Aaron unable to see the 
error in his solution process even though 
he did attempt to use multiple repre-
sentations when a graph was provided? 
The teacher had made it a point to use 
multiple representations in solving equa-
tions during class, so it is not surprising 
that Aaron would seek confirmation 
when the graph was present. However, 
the use of multiple representations alone 
is not enough to help students make con-
nections; students need to see how these 
representations connect. 

OUR STUDY WITH COLLEGE 
ALGEBRA STUDENTS
Our proposal for curricular enhance-
ment is based on a study, conducted 
over two semesters with college algebra 
students, that examined how students 
developed algebraic concepts using vari-
ous types of technology. During the fall 
semester, fifteen students participated in 
the study; four of them also took part in 
two interview sessions conducted dur-
ing the last three weeks of the course. 
During the spring semester, thirty-four 
students participated in the study; seven 
of them took part in similar interview 
sessions. Data were collected during 

both semesters through interviews, 
researcher field notes, and student arti-
facts. Because the content of the typical 
college algebra course is roughly the 
same as that of a high school second-
year algebra course, our results maintain 
some applicability to the secondary 
school curriculum.

In this particular study, students in 
the first semester were taught with stan-
dard graphing calculators (the TI-84, 
which does not allow dynamically linked 
representations) along with occasional 
demonstrations by the instructor using a 
platform that allows dynamically linked 
representations (TI-Nspire CAS). By 
dynamically linked, we mean representa-
tions that update in real time as each is 
manipulated. During the second semes-
ter, each student was issued a TI-Nspire 
CAS to use during the entire semester, 
and the same teacher served as a control 
for instructor influence with respect to 
general approaches to instruction. The 
teacher for both semesters was an expert 
on the use of technology in the teaching 
and learning of mathematics who has 
delivered many hours of in-service pro-
fessional development.

Aaron participated in the first semes-
ter of the study. As a result, he was not 
able to see a real-time linkage between 
the key features of the graph and their 
corresponding algebraic counterparts in 
the symbolic world.

DEVELOPMENT OF  
SYMBOLIC MEANING
The theoretical framework of this study 
is based on research with microcom-
puter-based laboratory (MBL) technology 
(Lapp and Cyrus 2000) as well as Kaput, 
Carraher, and Blanton’s (2008) model 

for the development of symbol systems. 
In the research with MBL, we have seen 
that real-time changes in linked repre-
sentations that are simultaneously visible 
help students make connections among 
corresponding features of the various 
representations (Lapp and Cyrus 2000; 
Beichner 1990; Brasell 1987).

Linking representations deepens 
understanding of mathematical con-
cepts, but we still must ask how the use 
of symbol systems influences our learn-
ing and, further, our development of 
new ideas. Kaput, Blanton, and Moreno 
(2008) propose a model that describes 
how we develop our understanding of 
existing ideas as well as how we create 
new concepts. The key to this model 
is the communication and analysis 
between two worlds. One is the “real 
world” (i.e., the world of broader mathe-
matical or physical experiences), and the 
other is the world of the symbols that we 
use to represent these real-world experi-
ences. In this model, the learner initially 
creates raw representations from expe-
riences; in turn, these representations 
and understanding of the real world 
evolve as the student interacts with both 
worlds. The evolution of the student’s 
view of the real world is relative to the 
symbolic worlds of B and C, which are 
represented by AB and AC (see figs. 4a 
and 4b). In this sense, Kaput, Blanton, 
and Moreno’s model is consistent with 
Tall and Vinner’s (1981) view of an 
evolving “concept image.”

This process, although focusing 
on representations, is consistent with 
Sfard’s (1991) process of interiorization, 
condensation, and reification, in which 
concepts become internalized through 
interaction with the various natures of 
the mathematical ideas. In some ways, 
the use of technology here reduces the 
length of time for Sfard’s interiorization 
and facilitates the condensation process. 
Alleviating the computational load can 

Fig. 1  Aaron shows his algebraic approach for 

solving (x – 2)(x + 3) = 6, setting each factor 

equal to 6.

Fig. 2  Given the graph of the function as 

shown, students were asked to find all solutions 

to (x – 1)(x + 2) = 4 and justify their answer.

Fig. 3  Aaron’s algebraic approach to solv-

ing (x – 1)(x + 2) = 4 mirrored his algebraic 

approach to solving (x – 2)(x + 3) = 6.
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students interviewed during the first 
semester of the study.

JON’S APPROACH
How do we create experiences that 
allow students to move fluidly among 
various representations while maintain-
ing an isomorphic mapping of meaning 
between various worlds used to repre-
sent the ideas involved? One way is to 
use technology that allows for linked 
representations.

In contrast to the students interviewed 
in the fall semester, who used only the 
basic graphing technology, all the students 
interviewed in the spring semester showed 
an ability to move among representations 

as a means of justifying their reasoning. 
To illustrate, we examine Jon’s response 
to the same question posed to Aaron— 
solving the equation (x – 2)(x + 3) = 6. 
Unlike students from the previous semes-
ter, Jon realized that he must get the equa-
tion set equal to zero to make the compari-
son to zeros on the graph of a function. In 
the following exchange, Jon referred to his 
solutions to other problems (problems 6 
and 7; see fig. 5).

Interviewer: So what do you think is dif-
ferent about this? Why is it important 
that you get the 6 to the other side?

Jon: Because I think if you were to  
graph it, you’re trying to find a com-
pletely different line, if it’s a 6 or 0 
and if it’s 0 . . . You’re trying to find y. 
And then if y was 0 . . . I don’t know.

Interviewer: So you’re thinking of it 
from a graphical standpoint?

Jon: Yeah, I’m thinking about it from  
a graph. If it’s equal to 6, it’s going  
to be up higher and it’s gonna  
be . . . You’re not looking for the 
zeros [points to problems 6 and 7  
from the earlier questions].

Interviewer: So kind of like the  

also keep the lack of procedural fluency 
from becoming a cognitive obstacle to 
reaching condensation or reification, as 
observed by Lapp, Nyman, and Berry 
(2010).

Although Aaron had access to the 
use of multiple representations and 
the teacher routinely used graphical, 
numerical, and algebraic representa-
tions, they were not dynamically linked. 
Thus, Aaron may have had more dif-
ficulty making a connection between the 
meaning of the graphical representation 
of x-intercepts and the zero property of 
multiplication as a technique for equa-
tion solving. It is also important to note 
that Aaron’s approach was typical of all 

Fig. 5  Jon was able to use his solutions  

to these problems to help him solve 

(x – 2)(x + 3) = 6. These are the graphs for 

problems 6 and 7 in Jon’s earlier interview.

Fig. 4  Kaput, Blanton, and Moreno (2008, pp. 30 and 31) describe a model that explains how 

symbolic meaning evolves (a) and how symbol systems are nested as they evolve (b).

(a)

(b)

(a)

(b)
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difference in those earlier problems?
Jon: Basically, I took number 7 and tried 

to turn it more into, like, number 6. 
Like, I tried . . . I just moved it down, 
so that way I would be able to solve 
for it. I visualized it as more like 
bringing it down, and I just solved for 
the vertex, which I know how to do. 
When it comes to that, it’s more com-
plicated to get to that point.

Interviewer: Oh, the x-intercepts you 
mean, as opposed to the vertex?

Jon: Yeah, ’cause when it’s at equals 6, 
it’s like the whole thing got raised 
6. So I just made it . . . I brought it 
down to the vertex . . . and then I 
just solved for it there because that’s 
easier for me to do algebraically.

Jon had first been exposed to dynami-
cally linked representations through 

technology-rich investigations in class. 
In one investigation, manipulating a 
graph gave real-time change in the alge-
braic representation of the quadratic 
function as well as the factored form 
of the function. Jon was asked to label 
the x-intercepts on the graph, and, as he 
manipulated the graph, he noticed a con-
nection between the numerical values of 
the x-coordinates of the x-intercepts and 
the numerical values, r1 and r2, found  
in the factored form of the function  
a(x – r1)(x – r2) (see fig. 6).

In the past, we have seen that students 
tend to focus on aspects of a situation 
that are invariant across representations 
(Lapp 1997). In this case, the student 
noticed that, no matter how the graph 
was manipulated, the numerical values 
of the x-coordinates in both the labeled 
x-intercepts and the r1 and r2 values 

in the factored form of the function 
remained the same. The classroom inves-
tigation also included questions designed 
to focus the student’s attention on the 
effects on the function’s output for enter-
ing each x-coordinate of the zeros into 
the factored form of the function as well 
as the values of each factor. Our research 
suggests that this combination—commu-
nication and analysis between symbolic 
worlds—enabled the student to articulate 
the reason for the use of factoring as a 
technique for equation solving. For this 
reason, it is imperative that the equation 
is set equal to zero before factoring.

Students in both semesters were 
exposed to the zero property for mul-
tiplication as a reason for solution by 
factoring, but students in the second 
semester, using CAS, were allowed to 
interact with linked representations and 

Fig. 6  These are still images from the dynamic experience of moving a graph and seeing the factored form of the function change in real time. 

Manipulating the graph enabled Jon to see the relationships between roots and x-intercepts.

(a)

(b)

(c)

(d)
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were required to justify their reason-
ing in a lab experience. Students in the 
first semester were told by the teacher 
about this reason but simply watched 
the teacher point out the fact on a single 
graphical representation that was not 
linked algebraically.

In another investigation, Completing 
the Square (see fig. 7), students devel-
oped a connection between algebraic and 
graphical representations for the process 
of completing the square and observed 
relationships among various parameters 
found in the algebraic expressions. Here 
students further experienced the con-
nection between algebraic and graphical 
transformations.

This experience likely led to Jon’s 
strategy of transforming the graph of 
a parabola and its intersection with a 
horizontal line above the x-axis into 
one in which the parabola was shifted 
down until the horizontal line was 
superimposed on the x-axis. In his desire 
to transform an equation by subtract-
ing 6 from both sides, Jon expressed a 
graphical understanding linked to the 
algebraic transformation of subtracting 
6. He stated that he was essentially mov-
ing the dotted line (see fig. 5) down to 
coincide with the x-axis so that he could 
use his technique of factoring, which 
required the equation to be set equal 
to zero. In this instance, he was able to 
justify his process and not just execute it 
procedurally.

The influence of the Completing the 
Square investigation can also be seen 
in Jon’s reference to the movement of 
the parabola’s vertex during his verbal 
description of his graphical understand-
ing. In this investigation, students were 
specifically asked to follow the move-
ment of the vertex.

Jon clearly demonstrated an under-
standing of the concept of root and its 
connection to factoring as an equation-
solving technique. He explained why he 
could not simply set each factor equal to 
zero in the equation (x – 2)(x + 3) = 6: 

Jon: If I plug 2 into the first one, 2 
minus 2 . . . that would give me 0, 
and 0 times anything would equal 
0, not 6, so that’s wrong. Then if I 
plug –3 in, –3 minus 2 would be –1, 
and then the second one [referring to 

Fig. 7  Students use sliders to manipulate a parabola given in vertex form and see its equivalent 

expression in standard form. In this way, they were able to make more connections when the 

quadratic was expressed in vertex form.

(a)

(b)

(c)
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the second factor] would still be 0, so 
–1 doesn’t equal 6 either [meaning 
entering –1 into the equation], so that 
would be wrong too.

Jon could articulate an understanding 
of the root-solving process using the zero 
property of multiplication along with 
his verbal reference to the vertex move-
ment. This fact indicates an influence of 
both these investigations on his math-
ematical understanding and its relation-
ship to the symbolic world that describes 
these ideas.

DYNAMIC LINKING IS THE KEY
From these contrasting examples, we 
see that, as we teach algebra, conceptual 
understanding can go hand-in-hand 
with procedural ability. Our research 
challenges the conventional wisdom 
that students must first become proce-
durally fluent before they can under-
stand the concepts that we teach. Heid 
(1988) challenged this position more 
than two decades ago, arguing that we 
should rethink the sequencing of skills 

and concepts in calculus by using com-
puter algebra systems to develop con-
cepts before teaching procedures.

Here we see this same principle 
applied to high school algebra concepts. 
The difference between our study and 
Heid’s is that we suggest that it is not 
just the computer algebra system that 
influences how students see connections 
but rather the dynamic linking of vari-
ous representations. Students in the first 
semester of this study used the TI-84 
and were introduced to concepts before 
skills; however, they did not have the 
ability to manipulate various represen-
tations and see real-time effects among 
representations.

A second aspect of concept develop-
ment that we noticed involves student 
control of the environment. As Lapp and 
Cyrus (2000) suggest from research on 
the use of data collection devices, the stu-
dent’s ability to manipulate the environ-
ment plays a significant role in making 
connections. During the first semester 
of this study, the teacher merely demon-
strated some of the dynamically linked 

representations using a computer during 
class; the students did not have use of 
this technology individually. Results of 
our interviews showed that none of these 
students could articulate connections 
among various representations. However, 
during the second semester, each student 
had a TI-Nspire CAS device and used it 
during student-centered investigations. 
This ability to communicate and analyze 
through dynamically connected represen-
tations between the symbolic world and 
the world of mathematical ideas allowed 
students to make connections between 
concepts and procedures.

As technology that links represen-
tations has become readily available, 
there is no reason we should not take 
advantage of it to better develop students’ 
mathematical understanding. However, 
technology alone cannot make these con-
nections for students. Kaput, Blanton, 
and Moreno (2008) as well as Sfard 
(2008) suggest that students’ negotiation 
of discourse between the symbolic world 
and the world of mathematical ideas plays 
a key role in the development of symbolic 
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meaning. Therefore, as teachers, we need 
to use appropriate technology to engage 
students in investigations that allow 
them to make mathematically meaningful 
observations and justify them.
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