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Lab 11:  Numerical Integration Techniques 
 
Introduction 
 
The purpose of this laboratory experience is to develop fundamental methods for approximating 
the area under a curve for the definite integral.  With this in mind, we will work from specific 
cases for calculating the sum of trapezoids and parabolic arcs that approximate the area under a 
curve and explore the relative speeds of these methods for convergence to the definite integral 
paying particular attention to the error bounds on the approximation. 
 

 
Figure 1 

 
Laboratory Experience 
 
From the Fundamental Theorem of Calculus, we know that if we want to calculate 

� 

f x( )
a

b∫ dx , 
we simply have to find an antiderivative 

� 

F  of the function f and find the difference 

� 

f x( )
a

b∫ dx = F b( ) − F a( ) .  This works well for functions for which we can easily find the 

antiderivative.  But you may recall functions such as 

� 

f x( ) = ex
2

give us difficulty when 

attempting to find an exact solution for 

� 

ex
2

0

1∫ dx  since the antiderivative of 

� 

f x( ) = ex
2

 is elusive.  
In this lab we will explore several methods for approximating integrals such as this and try to get 
a handle on the error bounds for our approximation. 
 
One approach for approximating the area under a curve comes from the use of rectangles as 
rough approximates for portions of the area.  When these rectangular areas are added together we 
can obtain an approximation of the area.  You may recall this approach as a Riemann sum.  
Figure 1 uses a Riemann sum with 4 subintervals of equal length, where the height of each 
rectangle uses the value of the function at the right-hand endpoints of each subinterval. 
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Figure 2: Approximations Using Rectangles 

 
Since our ultimate goal is to understand the error involved in using numerical methods of 
approximation of integrals, we will begin by using integrals for which we do know the exact 
value and compare it to the approximated area from various numerical methods.  Eventually, we 
will look at integrals for which we do not know the exact value and try to place a bound on the 
error of approximation. 
 

1. In this lab, we will begin by comparing several numerical methods for approximating the 
integral 

� 

4x 3 −13x 2 + 9x + 3dx
0

2∫  with its exact value.  Using your CAS, what is the 

exact value of 

� 

4x 3 −13x 2 + 9x + 3dx
0

2∫ ? 
 
 
 
 
 

2. In questions 2, 4, and 5, you will be comparing different methods of approximation with 
the exact value you have just obtained.  Therefore use the table at the end of the lab for 
recording your information.  For this question you will use a Riemann sum 
approximation (rectangles). 

 
a. Using a Riemann sum with 

� 

n = 4  subintervals, approximate 

  
4x3 −13x2 + 9x + 3dx

0

2

∫ .  Show all work, writing out the sum in expanded form 
(e.g. express each term in the sum as a product of two values).  Note whether you 
used left or right sums. 
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b. Use Reimann Library commands (for TI-Nspire CX CAS) to approximate the 
same integral using 

� 

n =16  subintervals.  Record your data in the given table. 
 
 

c. Experiment using at least three different values of n until you find a value for n so 
that the Riemann sum approximates the integral to within 0.001.  Record your 
trials in the table.  State your final value for n and the corresponding area. 

 
 
 
 
 
 
 
So far we have used rectangles to approximate the area under a curve, but one of the 
consequences of this is that we get fairly large errors unless we have a large number of 
rectangles as you observed in the last question.  One way we can reduce the error for “wiggly” 
functions with the same number of subintervals is to use trapezoids instead of rectangles (see 
Figure 3). 

 
Figure 3: Approximations Using Trapezoids 

 
Recall that for a trapezoid with dimensions of 

� 

b1, b2 , and 

� 

h as shown below, the area is given by 

� 

A = 1
2
b1 + b2( )h = h

2
b1 + b2( ) .  One way to visualize this formula is to take two of these trapezoids 

and flip one and join it with the other like a puzzle to get a larger rectangle.  Try it and sketch 
your image below explaining why the formula makes sense. 
 

 h

 b1

 b2
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3. Since we know how to find the area of a trapezoid, we can use it to find a general form 
for using trapezoids to approximate areas under curves. 

 
a. Apply the formula given above four times to the four trapezoids in Figure 3.  If 

we let 

� 

T4  denote the sum of the areas of the four trapezoids, using basic algebra 
and a corresponding labeled sketch of the graph and trapezoids, show that 

� 

T4 = Δx
2

f x0( ) + 2 f x1( ) + 2 f x2( ) + 2 f x3( ) + f x4( )[ ]  where 

� 

Δx = b − a
4

.  Explain 

geometrically why there are “2”s in the expression referring to your sketch. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. We now want to generalize this expression beyond just 4 subintervals.  Suppose 
we have n subintervals, use your process from part (a) to generalize to an 
expression for 

� 

Tn .  Explain your reasoning for the generalization by describing the 
relationship between the algebraic expression and the physical aspects of the 
sketched trapezoids. 
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c. In order to create a function that will calculate the area approximation using 
trapezoids (as well as other methods), we will need to find a way to locate the 
various values of  xk  on the x-axis.  The value of  xk  can be found using 

 
xk = a + k ⋅ b− a

n
⎛
⎝⎜

⎞
⎠⎟

.  Explain why this expression works. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

d. Create a function of three variables, called trap(a,b,n), of three parameters (a, b, 
and n) on your CAS that calculates the trapezoid approximation for the area under 
a function assumed to be predefined as f on the interval 

� 

a, b[ ] using n 
subintervals.  Here you will need to use the sigma (Σ ) command found in the 
symbol palette on the TI-Nspire.  Also, you want your trap(a,b,n) function to 
only contain the parameters f, a, b, and n.  Therefore you will need to use the fact 

that 
 
Δx = b− a

n
 and that the location of 

 
xk = a + k ⋅ b− a

n
⎛
⎝⎜

⎞
⎠⎟

.  State your function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

e. Now repeat what you did in Question 2 using the trapezoid approach and 
recording your data in the table. 
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So far we have use rectangles and trapezoids to approximate areas under curves.  However, since 
most curves are “curved” we may want to use a figure that is itself smooth and curved.  A 
familiar such figure is a parabola.  We have been working with parabolas since our early years in 
algebra and so we might expect them to come in handy as approximating tools for areas.  It also 
happens that Archimedes figured out how to find the area under an arbitrary parabola.  From 
Archimedes’ result we know that the area under a parabola passing through points 

� 

x0, f x0( )( ), 

� 

x1, f x1( )( ) , and 

� 

x2, f x2( )( ) can be given by 

� 

Δx
3

f x0( ) + 4 f x1( ) + f x2( )[ ]  where 

� 

Δx  is the length 

of a subinterval 

� 

xi, xi+1[ ] .  So if we have three points on a function, we can construct a parabola 
through the points so that it approximates the original function on the two consecutive 
subintervals as seen in Figure 4 showing two parabolic arcs along four subintervals.  In Figure 4, 
we have two parabolas each mimicking the original function along two consecutive subintervals.  
The first parabola passes through the points 

� 

x0, f x0( )( ), 

� 

x1, f x1( )( ) , and 

� 

x2, f x2( )( ).  The 
second passes through the points 

� 

x2, f x2( )( ), 

� 

x3, f x3( )( ), and 

� 

x4 , f x4( )( ).  If we do this for 
many parabolas under a curve, we can get an approximation for the area under the curve. 

 

 
Figure 4: Approximating Using Parabolas 

 
4. We will now use Archimedes’ result to approximate the areas under the two parabolas 

shown in Figure 4. 
 

a. Let 

� 

S4  be the combined areas found under the two parabolas as shown in Figure 
4.  Using algebra and a corresponding labeled sketch of the graph, show that the 

formula for 

� 

S4  is given by:  

� 

S4 = Δx
3

f x0( ) + 4 f x1( ) + 2 f x2( ) + 4 f x3( ) + f x4( )[ ]  
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b. Let 

� 

Sn  be the sum of the areas found under 

� 

n
2

 parabolas (where n is even).  Write 

an expression for 

� 

Sn .  Explain your reasoning for the generalization by describing 
the relationship between the algebraic expression and the physical aspects of the 
sketched parabolic pieces. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c. Create a function, called simp(a,b,n), of three parameters (a, b, and n) on your 
CAS that calculates the parabola approximation for the area under a function 
predefined as f on the interval 

� 

a, b[ ] using n subintervals with n even.  State your 
function.  This method of approximation is called Simpson’s Rule. 
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5. Now we will compare the method using parabolas, called Simpson’s Rule, to the other 
methods. 

 
a. Repeat Question 2 using Simpson’s Rule, organizing your data in the table. 

 
b. What value of n did you need for each method to get the approximation within the 

desired accuracy of 0.001?  Which method needed the smallest value of n?  
Which needed the largest?  Why do you think some methods required fewer 
subintervals to achieve the same level of accuracy? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. The previous examples have been a bit contrived since we could easily compute the 
integral exactly using the Fundamental Theorem of Calculus.  The methods we have 
discussed here are particularly handy when we are dealing with a function for which we 
cannot find an algebraic representation for the integral.  Let’s now investigate the integral 

� 

1+ 25x 4
0

2∫ dx , one that we cannot easily find exactly. 
 

a. Approximate 

� 

1+ 25x 4
0

2∫ dx  using the Trapezoid Rule and Simpson’s Rule.  Use 
different values of n until you feel that your answers are accurate to within 0.001. 

 
 

 
b. Discuss how you decided when your approximations would be within the desired 

tolerance?  Discuss how you were able to get a feel for the accuracy of your 
answer when you do not have the exact answer to use to compare it? 
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c. Which method appears to be the fastest at converging on the area to the desired 
accuracy? 

 
 
 
 
 
 
 
 
 
We have now been introduced to several methods for approximating integrals.  The comparisons 
we have made give us some idea of the relative speeds of these methods for approximating 
integrals to a certain desired accuracy.  However, we have not yet been able to determine a value 
of n a priori that will guarantee us a desired accuracy.  We will explore this issue later. 
 
 
 
 

Data for 
  

4x3 −13x2 + 9x + 3dx
0

2

∫  
 
Method Used # Subintervals  Δx  Exact Area Approx. Area Error 

      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
 


