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Abstract This paper presents the design, analysis,
and comparison of a novel four-pendulum spherical
robot. The proposed mechanism rolls omnidirection-
ally via four tetrahedrally-located pendulums that shift
the robot’s center of mass to create rolling torque.
The nine dynamic equations of motion are derived
via the Lagrangian and nonholonomic constraint equa-
tions, and then simulated numerically; results show
successful propulsion with expected behaviors. The
mechanism is then compared to existing center-of-
mass designs in terms of directionality, drive torque
arm, and inertia eccentricity. In these regards, the four-
pendulum design is a balance of existing designs: it
is omnidirectional with eccentricity and torque capa-
bility that are in the middle of the range exhibited by
existing designs. In addition, the new four-pendulum
mechanism has been built and tested as a successful
proof-of-concept prototype.
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1 Introduction and Related Work

Remotely controlled mobile robots continue to
become more popular in society and in the research
literature. One interesting vein of research is in the
use of spherical robots — mobile robots with an outer
spherical shell that traverse an environment by rolling.
These ball-shaped robots are intriguing because they
move without any externally visible mode of propul-
sion and must navigate the nonholonomic ball-and-
plane workspace. Thus, they require relatively novel
motion mechanisms, subtly complex dynamic analy-
sis, and advanced control algorithms [1-3]. No single
propulsion scheme has emerged clearly better than the
others, and so new mechanisms continue to be pre-
sented. Because of their outer shell, spherical robots
have the advantages of being durable, non-tippable,
and capable of being fully sealed from the outside
environment. They have found broad applications in
patrol and surveillance [4], extraterrestrial exploration
[5], environmental monitoring [6], underwater [7], and
even child-development [8].

This paper presents a novel spherical robot design
that uses four internal pendulums for propulsion. As
such, it is omnidirectional (it can roll in any direc-
tion instantly) unlike most of the existing spherical
robot designs, and yet comparably agile. Here, the

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10846-016-0414-4-x&domain=pdf
http://orcid.org/0000-0002-2247-5600
mailto:b.dejong@cmich.edu
mailto:ernur.karadogan@cmich.edu
mailto:kumar.yelamarthi@cmich.edu
mailto:hasba1jh@cmich.edu

J Intell Robot Syst

design is described and implemented on a physical
prototype as a proof of concept. The mechanism’s
dynamics are analyzed from first principles, and its
motion is numerically simulated. The design is also
analyzed and contrasted with existing designs in terms
of directionality, torque arm, and inertia eccentricity.

Spherical robots can be roughly categorized by
their drive mechanism. One technique uses conserva-
tion of angular momentum by having one or more
internal flywheels that are tilted to induce rolling of
the sphere. For example, Bhattacharya and Agrawal
[9] use two perpendicular rotors, while Joshi and
Banavar [10] use four rotors to achieve omnidirec-
tionality. Gajamohan et al. [11] use three rotors in a
cube robot to rotate and balance omnidirectionally.
These robots have the advantage of being able to
produce drive torques higher than pendulum designs
(i.e., torque arms are greater than the sphere’s radius)
but the disadvantages of large internal energy and
undesired precession torques.

A few spherical robots move by distorting or trans-
forming their outer shell, or by simply using the
environment’s wind similar to tumbleweed. Sugiyama
et al. [12] use shape-memory alloy to deform and roll
wheels and spheres, while Wait et al. [13] and Artusi
et al. [14] deform panels on a robot’s shell via air
bladders and dielectric actuators, respectively.

The most common propulsion scheme, however,
is to internally change the robot’s center of mass to
induce rolling. This scheme has the advantage of actu-
ation simplicity, but the disadvantage of limiting the
maximum torque arm to less than the sphere’s radius.
There are several approaches to modifying the center
of mass, as described below.

One proposed but under-studied design [15] uses a
single internal mass that is hung and moved by several
cables and pulleys. This design has the advantage of
minimal static mass (i.e., almost all of the mass can be
clustered in the movable mass), but its torque arm is
limited by the locations of the cables — the mass cannot
move past the bisection line from one cable mount to
another.

A more common center-of-mass technique is to use
an internal car or drive unit that rolls on the interior
of the shell, similar to a hamster in a hamster wheel.
For example Halme et al. [16] present a spring-loaded
unicycle drive unit, while Bicchi and colleagues [17],
and later Alves and Dias [18], use a small internal
car. These designs have the advantage of well-studied
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drive mechanisms and result in a sphere that can roll
in any direction, but are usually not instantaneously
omnidirectional, as the drive unit must turn before
climbing the shell. They also suffer from the typical
grip-wear tradeoff of friction drives — to get good trac-
tion, the drive wheels need large normal forces, but
this increases steering friction and wear.

The most common center-of-mass design is a sin-
gle internal pendulum that can rotate about a main
rolling axis and tilt to induce steering when rolling.
For example, Seeman et al. [4] and Michaud and
Caron [19] present single pendulum designs and
applications. Schroll [20] analyzes and simulates the
single-pendulum dynamics, while Hogan et al. [5]
discusses a robot that uses a hanging payload as
the pendulum. Designs also exist with two hanging
pendulums and stick-slip spinning, such as Ghanbari
et al. [21] and Yoon et al. [22]. The single-pendulum
design has the advantage of a simple (typically two-
degree-of-freedom) drive mechanism; its primary dis-
advantage is that it is not omnidirectional — single-
pendulum designs are more “steered wheel” than
“rolling sphere” because of their main drive axis.
When facing forwards, for instance, these designs
cannot roll purely sideways.

Alternatively, some spherical robots move the cen-
ter of mass by sliding multiple masses along internal
tetrahedral spokes. As the masses slide along their
rail, the center of mass changes and the sphere rolls.
Javadi and Mojabi [23], Sang et al. [24], and Tomik
et al. [25] present such designs. These robots are omni-
directional instantaneously, but suffer from reduced
torque arms since the masses cannot all converge on
the ideal center-of-mass location. For example, when
rolling forward, one or more distributed masses may
be restricted to a backwards spoke and thus reduce
rolling torque.

2 Four Pendulum Design

The spherical robot presented here uses four
tetrahedrally-located pendulums to change the robot’s
center of mass and thus roll the sphere. The mecha-
nism, shown in Fig. 1, includes four pendulums that
rotate about the four tetrahedral axes. Their configu-
ration (rotating about tetrahedral axes versus inline)
and location (radial distance to motor, r,, and pen-
dulum rod length, r,) are optimized for maximum
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Fig. 1 CAD representation of four-pendulum mechanism

center-of-mass envelope without risking pendulum
overlap. Conceptually, this location is such that the
four pendulum’s arcs touch at the outer shell. From
rest, the mechanism can apply rolling torque in any
direction instantly, and in practice, the pendulums are
rotating in full circles as the robot rolls.

The mechanism has been implemented in a proof-
of-concept prototype, shown in Fig. 2. The electronics
and batteries are housed in a rapid-prototyped tetra-
hedral box in the center of a 33-cm-diameter plastic
shell, with motors mounted on the box facing out-
wards. The robot uses a Maple rS microprocessor,
Futaba 75 MHz RF transmitter and receiver, and LiPo
batteries for the motors (11 V) and electronics (3.7 V).
The motors are Polulu 12V brushed DC with built-in
50:1 gear reduction and 3200 CPR-output encoders.

Fig. 2 Four-pendulum
robot prototype

For orientation sensing, the robot uses a CHRobotics
CHR-UMG6 six-axis orientation sensor that incorpo-
rates accelerometer, rate gyro, and magnetic sensor
information.

The prototype successfully rolls in any direction,
as commanded by the user. As an initial prototype, it
is not optimized for minimum static mass nor does
it include position feedback. It has a static mass of
2.6 kg with a dynamic mass of 1.6 kg; the dynamic-
to-static mass ratio could be greatly improved in
future prototypes. The four-pendulum configuration
allows for ideal (point-mass) pendulum rod lengths of
13.5 cm in a 33 cm shell; the actual pendulums have
effective lengths of 10.0 cm. Initial tests show that the
prototype can accelerate with 0.6 m/s> and achieve a
maximum speed of 0.7 m/s. The prototype proves fea-
sibility of the four-pendulum design and allows for
future testing.

3 Mechanism Dynamics
3.1 Kinematics

To describe the dynamics of the four-pendulum mech-
anism, we define six inertial frames: a static World
frame, a Body frame centered on the sphere’s center
of mass, and four pendulum frames (numbered 1 to
4) centered on the corresponding pendulum’s center
of mass. The mechanism and frames are sketched in
Fig. 3.

The Body frame rotates in the World frame using z-
x’-z” intrinsic Euler notation with angles ¢, 6, and 1,
and translates with x and y. For simplicity, the frame
is assumed to also be at the sphere’s geometric center
such that it does not translate in the vertical direction.

@ Springer



J Intell Robot Syst

|
L,

T~

World

/

Fig. 3 Sketch of four-pendulum coordinate frames

The homogeneous standard rotation and translation
matrices for the Body are Ry, Rg, Ry, and D, with
total transformation from Body to World of

WT =D, RyRoRy. (1)
The sphere’s position in the world is
T T

"pg= RT[0001] =[xyO01]. )

The ith pendulum frame is defined such that the x;-
axis is aligned with the pendulum arm and the z;-axis
is parallel to its rotation axis. As the pendulum rotates
with angle «;, the transformation from i to the motor’s
position is (using notation ¢ and s for cosine and sine)

ca; —so; 0 rpea;
| s ca; O rpsay
Ti = 0 0 1 ry ’ )

0 0 0 1
The motors are mounted in a tetrahedral pattern

defined by the tetrahedral angles = cos™! (_1 /3) ~

109.5° and 120° rotations about the z-axis, repre-
sented by rotation matrices

[ ce 0se0
0 100
R. = —se0ce0|’
L0001
[ ¢120° —s120° 0 O
s120° ¢120° 00
R = 0 0o 10l 4
0 0 01
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Therefore, the transformations for the four pendu-
lums are

T =T,

T = R.Ti_,,

5T = R120R,T;_5,

T = RL,\R.Ti—y. (5)

Pendulum i located at
T T
"pi= AT ET[0001] =[x yiz 1] . (6

The system therefore has 9 generalized coordi-
nates: the three Euler angles, the two translations, and
the four pendulum angles:

q=1[0,0,V,x,y, a1, a,a3,a4]” . (7

The translational velocities of the sphere and pen-
dulums are the time derivatives of the p’s above:

Voo =[5y 00] ®)
. d
Vi = = (b fr[o001]")
= [4 %z 0]". )

The mechanism is to be simulated in MATLAB, so
it is advantageous to rewrite the " p; equation to elim-
inate time derivatives of functions. This can be done
by using the chain rule:

w. _ [ 8%, a%p, 8Wp,~] . 1
p’_[f)m i g |7 (10)

The angular velocities of the sphere in World and

Body coordinates are

0 6
L 0 0
Vo, =g +6+y = i TR |
0 0
0
0
+R¢,R9 w
0
[ Ocg + Yrspsd
| Os¢p — Ycpsh
- ¢+ Yo
L 0
[0 cp spsO 0 é
| 0s¢ —cgsO O 6
110 ¢ oy |’ (I
100 0 1 0
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and
0 6 0
B “1p-1] 0 1] 0 0
0 0 0
sysf cy 00 é
| c¥s® —sy 00 6
T e 0 10|V (12)

0 0 01 0

It is advantageous to define both — as shown later,
the World form is needed for the constraint equations,
while the Body form is used with the (Body-frame)
inertia for the kinetic energy.

The relative angular velocity of pendulum i with
respect to the sphere is

j . T
Bai)y =T wis =PT[00 & 0] . (13)
Therefore, the pendulum’s total angular velocity is
Boi =P s + Pwiss. (14)

3.2 Equations of Motion: Lagrange Equations

The Lagrange equations of motion and generalized
coordinates are

L = Kiotal — Utoral

d (0L
— | — = Aj F; 15
dt<aqk) 0 Zl iaix + Fi (15)

where Lis the Lagrangian, K;,qand Usyq are the
system’s kinetic and potential energies, k corresponds
to the generalized coordinate (1 to 9), n is the num-
ber of constraint equations, the A’s are the Lagrange
multipliers for the constraints, the a’s are the coeffi-
cient in the constraint equations for each generalized
coordinate, and the F'’s are the nonconservative forces
(friction, motor torques, etc.) on the generalized coor-
dinates. Using the chain rule and rewriting following
the method described in [26], the equations become

> d (aK/aqk)q_j K (al;{aqk)q}

dq;

j=1

oK aU
——+t— = Aiaik + Fy (16)
dqrk  Iqx ; o

n

where j sums through the generalized coordinates. A
third version is useful for control applications:

n
M@i+Vg.q)+Gg=>) raj+F (17
where M is the inertia matrix, V is the Coriolis

and centripetal vector, and G is the gravity vector. The
matrix and vectors have terms

("% foa)

M;j (@) = 4
K
. 9 ad K
Vk(q,CI)=Z]: ( /(Ik> qj —@,
oU
Gi (q) = Fyn. (18)
qk

The mechanism has static mass M (shell, frame,
electronics, motors, etc.) and moveable pendulum
masses of m each. The translational (‘_#’) kinetic
energies are

1 1 . .

Koo = 3"l M" by = M (2 4 52) 19)
1 1 . . .

K, = 2WpleWp, = EM (xi2+yi2+zl-2>. (20)

The sphere has moment of inertia tensor Iy and
rotational kinetic energy

1
Ks,r =_5 zIsts
2
1
= (Ixstw)% + 1y Bl 4 1., " g) .QD

Each pendulum’s inertia must be shifted to the
motor via the Parallel Axis Theorem to define tensor
'I; and rotational (‘_r’) kinetic energy

Y2 +22 -X;Yi —XZ 0
—-X;Y; X2+ 7?2 -YiZ; 0O

1 = i T 22
PEM Xz —YiZi X242 0 (22)
0 0 0 0
1
Kir = 3" T(TIBT) (23)
where X; = rpca;, Y = rpsa;, and Z; = ry,. The

total kinetic energy is

4
=Ko+ Kor+ Y (Kis + Kir) (24)
i=1

Kiotal
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The potential energies are

Us=[00Mg0] "ps=0, (25)
U =[00mg0]-Yp, =mgz, (26)
with total
4
Usorat = Us + Y _ U 27)
i=1

The R-radius sphere is assumed to roll without
slipping, implementing two nonholonomic constraint
equations (n = 2):

fi=i-R- Yo, =0, (28)
f=3+R - Vo, =0. (29)
Defining rolling damping as b, motor damping

as byot0r, and motor torques as t;, the constraint coef-
ficients and nonconservative forces can be modeled

as
- 9 - o -
af1/8¢ af2/3¢>
af /36 af 2/30
fl/al// fz/aw
1 0
ay = 0 ,ay = 1 s
0 0
0 0
0 0
0 i L 0 B
0 -
0
0
—bron
F = _broll . (30)
1 = bporor
2 = bpotor
3 — bmotar
| T4 — boror |

The four-pendulum equations of motion have been
simulated in MATLAB. To simulate the nine coordi-
nate and two constraint equations, the multipliers are
solved for using the x and y equations:

M =M4(q) G +Vai(q,§)+Gs(q) — Fi4
A =Ms5(q)§+Vs(q,q¢)+Gs(q) — Fs (31)

where the 4 and 5 subscripts signify rows of the matri-
ces and vectors. The multipliers are then substituted
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back into the remaining seven Lagrange equations (k
signifies row, from 1 to 3 and 6 to 9):

My — ay My — ayMs) G
+ (Vi—aiVi—azVs) + (Gy—a1xG4 — axGs)
= (Fx — a1 F4 — axFs) . (32)

The two constraint equations are differentiated
(again using the chain rule):

dfy, _d (o . [l ]
— = (a{Q)ZCI+|:_lCIj|q

dt — dt oq
7. .poa,
=a;q+gq a—qu (33)
q
dfy _ 7. .r9a;,
—_ = R — :0
g — @it 2g !

The differentiation is a standard method (e.g., [27])
and is needed to make the new inertia matrix full rank.
These equations are in Eq. 18 form — for example,

T] .. .T da 1 -
[al]q+(q %q)+<0>=o+o (34)
— and can be combined with the seven remaining
Lagrange equations. With these modifications, the
simulation takes the resulting nine equations, inverts
the new inertia matrix, and solves for .

4 Simulation Results

The mechanism dynamics have been simulated in
MATLAB for various initial conditions and torques
using normalized values of M = 1.0 (modeled as a
homogenous sphere), m = 0.25 (modeled as a point
mass), and R=1. In the results shown here, the rolling
damping and motor damping are assumed zero. Due
to the equations’ nonholonomic nature, the simulation
is susceptible to ill-conditioned configurations that
result in singularities in the inverted inertia matrix, and
results show slight numerical errors in energy conser-
vation; both limitations are similar to those seen by
other authors (e.g., [5, 20]). The following three exam-
ples, however, demonstrate the validity of the equa-
tions and mechanism, and the simulation’s usefulness
for future analysis and control schemes testing.
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4.1 Free Response

Figure 4 shows a sample free-response path and state
variables (i.e., no applied torques). For this simulation,
the mechanism was given an initial rolling velocity

towards positive x:

4.2 Single-Pendulum Response

Figure 5 also shows the mechanism and simulation
behaving as expected. The figure shows a sample
single-torque response path, with plots of state vari-
ables and energy in the system. For this simulation,

the initial velocities were zero but a constant (normal-
ized) torque was applied to one pendulum (colored red
in the figure):

g =1[0,0, —27,21,0,0,0,0,0]" . (35)

The results show the mechanism (and simulation)
behaving as expected. The sphere rolls in the posi-
tive x direction with wobbling due to the free-spinning
pendulums and the inherent wobbliness of spherical
robots (discussed later). The sphere positions, sphere
angles, and pendulum angles are shown in Fig. 4b; the
pendulum angles are increasing as the sphere rotates
but the pendulums do not.

F=10,0,0,0,0,—1,0,0,0]" . (36)

As expected, the mechanism rolls towards nega-
tive x due to the applied torque and towards positive
ydue to the unbalanced weight of the other three pen-
dulums. The simulation did not apply any control

Fig. 4 Simulation results
showing a normalized
free-response path due to an
initial rolling velocity. a
Initial position and
subsequent path of sphere.
b State variables

= 15-
o I —
N
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S
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Fig. 5 Simulation results
showing a path and b state
variables, ¢ energy when
torque is applied to one
pendulum
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to the other pendulums or towards maintaining a
desired rolling velocity. The energy plot shows that
the total energy in the system is increasing due to the
applied torque, but once the work associated with the
torque (Wyppiieq) is removed, the remaining energies
remain relatively constant (within 3.2 %). As men-
tioned previously, this slight fluctuation in the sim-
ulation’s energy is expected and is due to numerical
rounding and matrix-inversion approximations.

Fig. 6 Simulation results
showing a path and b state
variables when torque is
applied to two pendulums 0

(a) ,

4.3 Double-Pendulum Response

Results from a third example simulation are shown in
Fig. 6. Here, the simulation applied constant torques
to two of the pendulums (colored blue and black in the
figure),

F =10,0,0,0,0,0,0,—1,—1]7 .

(37)

5 6r
5 x
T 4
1 y
g o
2
s 0
.‘U:)
DC_>_2 ! ! ! ! ! ! ! ! ! ]
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— 1 %2 e
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causing the sphere to roll towards positive y. Because
of the symmetry of both the actuated and the free-
spinning pendulums, the path is a straight line. How-
ever, the speed along the path is not constant, as shown
by the slope of the y plot. The simulation did not
attempt to control that speed.

5 Comparison to Existing Center-of-mass Designs

This section compares the new four-pendulum mech-
anism to existing center-of-mass spherical robot
designs, here called the single-pendulum, the four
(tetrahedral) sliders, and the cable-mass designs. The
comparison is made on three aspects of the mecha-
nisms, as discussed below and summarized in Table 1.
The terminology and comparisons used are benefi-
cial for determining each mechanism’s strengths and
weaknesses with regards to the others.

5.1 Directionality Comparison

The first comparison is on the directionality of the
mechanism. Here, directionality is meant as the num-
ber of directions the sphere can roll instantly from
rest. It is meant as a general term rather than a tech-
nical one. Ideally, a spherical robot should be able to
roll in any direction instantly, as this provides navi-
gational advantages in complex environments. In that
regard, the four-pendulum, four sliders, and cable-
mass designs are omnidirectional, while the more
common single-pendulum design is not.

5.2 Torque Arm Comparison
The second comparison is on the theoretical normal-

ized torque arm. When a mechanism shifts its center
of mass from its geometric center, the mass creates

Table 1 Comparison of several theoretical center-of-mass
designs

Design Single Four Cable Four
pendulum  sliders mass pendulums
Directionality  Steered Omni  Omni Omni

<29% <100% <67 %
0-20% 0,100 % 36-100 %

Torque arm, rr <100 %
Eccentricity,e 100 %
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a rolling torque proportional to its distance. That dis-
tance, or torque arm, can be modeled as the percentage
of the sphere radius, assuming point masses and no
static mass:

horizontal distance to CoM
re =
R

- 100 %. (38)

For center of mass designs, 0 < r; < 100 %. This
is an ideal mechanism calculation, since in actuality
the robot’s shell, frame, and electronics create a static
mass that reduces the effective torque arm (e.g., 50—
67 % [20]).

Existing designs have either large or small max-
imum torque arms. Using this metric, the single-
pendulum design has a theoretical 100 % torque arm
since the pendulum’s mass can be moved out to the
sphere’s radius at any angle (<100 %). The cable mass
design has a similar maximum, although it is not at
any angle (<100 %) — the mass cannot extend past
the bisection line between any two cable mounts. On
the other hand, the four-slider design has a much more
restricted torque arm — simulations show a center of
mass envelope of a polyhedron with maximum torque
arm ranging from 20-29 %.

The proposed four-pendulum mechanism has a
maximum torque arm length between those of the
existing designs. If the four pendulums are equal, then
its center of mass can be calculated as the average of
the positions and the envelope of possible locations
is a truncated sphere. From the simulation, the maxi-
mum torque arm ranges from 56-67 %, depending on
the angle. That is, the four-pendulum design can ide-
ally generate torques equivalent to up to two-thirds of
its radius.

5.3 Eccentricity Comparison

The third comparison between designs is the eccen-
tricity of the robot’s rotational moment of inertia
about its center. A general three-dimensional body
has an inertia ellipsoid representing its rotational iner-
tia in any direction. The eccentricity of the ellipse
(mathematically, “first eccentricity”) is defined here as

(39)
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where Imajor and Iminor are the robot’s principal
moments of inertia about the ellipse’s major and
minor axes.

A well-known challenge of spherical robots is that
their inertia ellipses are not spherical (Imajor > Iminor)-
As the robot rolls, angular momentum is conserved.
However, the robot’s angular inertia is not constant,
and so the angular velocity varies resulting in wob-
bling of the sphere. Thus, having a mechanism with
little eccentricity (i.e., more homogeny) is advanta-
geous since it results in less wobble.

Existing designs have either high or low eccen-
tricity. A theoretical single-pendulum or cable-mass
design has one point mass, and thus an inertia
ellipse collapsed into a line. Their eccentricity is
always 100 % (unless, in the cable-mass design, the
mass is at the center), resulting in wobbling. In this
regard, the four-slider design is better. Simulation
shows that the four-slider design has an eccentric-
ity of <20 %; the four-slider design is less prone to
wobbling.

Similar to the torque arm comparison, the new four-
pendulum design’s eccentricity is between the existing
designs’ eccentricities. The four-pendulum’s eccen-
tricity varies depending on the configuration of the
pendulums, and ranges from 36 % to 100 %, with an
average of 84 %. The 36 % occurs when the four pen-
dulums are pointing in various directions, while the
100 % occurs when they are paired at opposite sides
of the sphere. Thus, the four-pendulum design is less
prone to wobble than the single-pendulum and cable-
mass designs, but more prone than the four-sliders
design.

5.4 Comparison Summary

As noted, these comparisons are based on theoretical
mechanisms. A physical robot will have numbers that
are more conservative. The four-pendulum prototype
is a successful proof-of-concept robot that is not opti-
mized for minimal static mass, but may be useful as
an example. As mentioned previously, it has a static
and dynamic masses of 2.6 kg and 1.6 kg; in Chase
and Pandya’s [1] terminology, it has a power factor of
0.615. The mechanism’s theoretical maximum torque
arm is calculated as 56-67 %; the prototype’s effec-
tive maximum is closer to 20 %. On the other hand,
the prototype’s eccentricity is better because of the
static mass. The mechanism’s theoretical eccentricity

is 36—-100 %, with an average of 84 %; the prototype’s
eccentricity is 30-92 %, with an average of 73 %.

6 Conclusions and Future Work

The proposed four-pendulum center-of-mass spheri-
cal robot is a novel and successful mechanism. The
nonholonomic equations of motion have been mathe-
matically derived and numerically simulated, showing
expected behaviors. The mechanism is also a balance
of existing center-of-mass designs in that it is omni-
directional, has torque arm around two-thirds of the
sphere’s radius, and inertia eccentricity of an average
84 %. The mechanism has been successfully imple-
mented on a physical prototype that demonstrates the
validity of the four-pendulum design.

The mechanism and equations show promise for
future work. For example, the Euler-angle representa-
tion used here is known for its ill-conditioning near
“gimbal lock” orientations. One possible improve-
ment is to derive and simulate the equations of motion
using quaternions rather than Euler-angles. Further-
more, the simulation behaves as expected but the
examples show the sphere does not roll with con-
trolled heading or speed. A next step is to apply
drive-velocity and path-following control schemes to
the four-pendulum mechanism. In addition, the pro-
totype is remote-controllable, but not autonomous;
future work includes adding global position feedback
and autonomous control. Finally, the omnidirectional-
ity of the four-pendulum design complicates the use
of orientation-dependent sensors such as video cam-
eras and ultrasonic position sensors since there is no
consistent roll axis. An unanswered research question
is how to apply, fuse, or simulate such sensors on an
omnidirectional spherical robot.
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