Associate Professor

Department of Mathematics

Central Michigan University

Office: Pearce 217

Email: george DOT william DOT grossman AT cmich DOT edu

Phone: (989) 774-5577

- Ph.D., University of Windsor, Windsor, Ontario, 1986.
- M.S., University of Windsor, Windsor, Ontario, 1982.
- B.A., York University, Toronto, Ontario, 1980.

- Yifan Zhang and George Grossman. A Combinatorial proof for the generating function of powers of a second-order recurrence sequence.
*J. Integer Seq.***21**(2018), no. 3, Art. 18.3.3, 15 pp. - Yifan Zhang and George Grossman. A combinatorial proof for the generating function of powers of the Fibonacci sequence.
*Fibonacci Quart.***55**(2017), no. 3, 235–242. - Yifan Zhang and George Grossman. Diophantine triples and extendibility of {1,2,5} and {1,5,10}.
*Fibonacci Quart.***52**(2014), no. 5, 212–215. - Mark Bollman and George Grossman. Numerical approximation to $\pi$ using parabolic segments.
*J. Concr. Appl. Math.***8**(2010), no. 2, 236–245. - George Grossman, Aklilu Zeleke, and Xinyun Zhu. Recurrence relation with binomial coefficient.
*J. Concr. Appl. Math.***8**(2010), no. 4, 602–615. - George Grossman, Akalu Tefera, and Aklilu Zeleke. On representation of certain real numbers using combinatorial identities.
*Int. J. Pure Appl. Math***55**(2009), no. 3, 451–460. - Xinyn Zhu and George Grossman. Limits of zeros of polynomial sequences.
*J. Comput. Anal. Appl.***11**(2009), no. 1, 140–158. - George Grossman, Akalu Tefera, and Aklilu Zeleke. On proofs of certain combinatorial identities.
Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications.
*Congr. Numer.***94**(2009), 123–128. - Mark Bollman and George Grossman. Sums of consecutive factorials in the Fibonacci sequence.
Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications.
*Congr. Numer.***194**(2009), 77–83. - George W. Grossman. On the numerical approximation to $\pi$.
*J. Concr. Appl. Math.***5**(2007), no. 3, 181–196. - George Grossman, Akalu Tefera, and Aklilu Zeleke. Summation identities for representation of certain real numbers.
*Int. J. Math. Math. Sci.***2006**, Art. ID 78739, 8 pp. - Nathan C. Blecke, Kirsten Fleming, and George William Grossman. Finding Fibonacci in a fractal.
*Applications of Fibonacci numbers.*Vol. 9, 43–62, Kluwer Acad. Publ., Dordrecht, 2004. - George Grossman and Aklilu Zeleke. On linear recurrence relations.
*J. Concr. Appl. Math.***1**(2003), no. 3, 229–245. - George Grossman and Florian Luca. Sums of factorials in binary recurrence sequences.
*J. Number Theory***93**(2002), no. 2, 87–107. - R. Fleming, G. Grossman, G., T. Lenker, S. Narayan, and S.-C. Ong. Classes of Schur $D$-stable matrices.
*Linear Algebra Appl.***306**(2000), no. 1-3, 15–24. - George W. Grossman and Sivaram K. Narayan. On the characteristic polynomial of the $j$-th order Fibonacci sequence.
*Applications of Fibonacci numbers,*Vol. 8 (Rochester, NY, 1998), 165–177, Kluwer Acad. Publ., Dordrecht, 1999. - James Angelos, George Grossman, Edwin Kaufman, Terry Lenker, and Leela Rakesh. Limit cycles for successive projections onto hyperplanes in $\mathbb{R}^n$.
*Linear Algebra Appl.***285**(1998), no. 1-3, 201–228. - R. Fleming, G. Grossman, T. Lenker, S. Narayan, and S.-C. Ong. On Schur $D$-stable matrices.
*Linear Algebra Appl.***279**(1998), no. 1-3, 39–50. - George W. Grossman. Fractal construction by orthogonal projection using the Fibonacci sequence.
*Fibonacci Quart.***35**(1997), no. 3, 206–224. - James Angelos, George Grossman, Yury Ionin, Edwin Kaufman, Terry Lenker, and Leela Rakesh. Packability of five spheres on a sphere implies packability of six.
*Amer. Math. Monthly***103**(1996), no. 10, 894–896. - George W. Grossman, Ronald M. Barron. A new approach to the solution of the Navier-Stokes equations.
*Internat. J. Numer. Methods Fluids***7**(1987), no. 12, 1315–1324.