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1. Introduction

The nth Bessel polynomial is

yn(x) =
n∑
j=0

(n+ j)!
2j(n− j)!j!x

j .

In [3], E. Grosswald conjectured that yn(x) is irreducible over the rationals for
every positive integer n. In [1], the first author proved that almost all yn(x) are
irreducible and later [2] sharpened this by showing that the number of n ≤ t for
which yn(x) is reducible is ¿ t/ log log log t. The object of this paper is to give a
further sharpening.

Theorem. The number of n ≤ t for which yn(x) is reducible is ¿ t2/3.

The first author’s earlier work used the Tchebotarev Density Theorem, but the
proof given here uses only elementary estimates. Our starting point is the Corollary
to Lemma 2 in [1], which states that if

(1)

 ∏
p|n(n+1)

p

2
 ∏
p|(n−1)
p odd

p


 ∏
p|(n+2)
p>3

p

 > n2(n+ 1)2,

then yn(x) is irreducible. We shall show that (1) holds for most n by showing that
the non-squarefree part of (n− 1)n(n+ 1)(n+ 2) is typically very small.

2. Preliminaries

For every positive integer n, we define

an =
∏
pα‖n
α odd

p and bn =
∏
pα‖n

p[α/2],

where pα ‖ n denotes, as usual, that pα is the highest power of p dividing n. We
then have that n = anb

2
n and that

(2) an ≤
∏
p|n

p.

In the next lemma, we use (2) to state (1) in a more usable form.
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Lemma 1. If yn(x) is reducible and t < n ≤ 2t then

bn−1b
2
nb

2
n+1bn+2 >

1
3 t.

Proof. From (1) and (2), we see that if yn(x) is reducible, then

n− 1
b2n−1

· n
2

b4n
· (n+ 1)2

b4n+1

· n+ 2
b2n+2

≤ 6n2(n+ 1)2.

The result now follows.

Lemma 2. If y is a positive real number, then

#{n ∈ (t, 2t] : bn > y} ¿ t

y
+ t1/2.

Proof. The left–hand side is at most

∑
t<n≤2t

∑
b2|n
b>y

1¿
∑

y<b≤
√

2t

(
t

b2
+ 1
)
¿ t

y
+ t1/2.

Lemma 3. If z ≥ 2 and y are real numbers, then

#{n ∈ (t, 2t] : bnbn+1 > z, bn ≤ y, and bn+1 ≤ y} ¿
t log z
z

+ y2.

Proof. The left–hand side is

(3)

≤
∑

t<n≤2t

∑
b2|n,c2|(n+1)
bc>z,b≤y,c≤y

1 ¿
∑
bc>z

b≤y,c≤y

(
t

b2c2
+ 1
)

¿ y2 +
∑
bc≥z

t

b2c2
.

Now the last sum in (3) is at most

(4) t
∑
r≥z

d(r)r−2,

where d(r) denotes the number of divisors of r. Using the elementary estimate∑
r≤x d(r)¿ x log x and partial summation, we find that (4) is

¿ t log z
z

.

This completes the proof
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3. Proof of the theorem

We will bound

(5) #{n ∈ (t, 2t] : bn−1b
2
nb

2
n+1bn+2 >

1
3 t}.

By Lemma 2, those n with any of bn−1, bn, bn+1, bn+2 greater than t1/3 contribute
¿ t2/3. The remaining n all have bn+j ≤ t1/3 for −1 ≤ j ≤ 2. By Lemma 3, those
n with any of bn−1bn, bnbn+1, bn+1bn+2 greater than t1/3 log t contribute ¿ t2/3.
The remaining n all have

bn−1bn, bnbn+1, bn+1bn+2 ≤ t1/3 log t.

Using the condition in (5), we see that

bn−1bn · bnbn+1 · bn+1bn+2 >
1
3 t,

so in fact the remaining n satisfy the stronger conditions

(6) 1
3 t

1/3 log−2 t ≤ bn−1bn, bnbn+1, bn+1bn+2 ≤ t1/3 log t.

Now consider those n satisfying (6) with bn > t2/9. Then bn−1, bn+1 < t1/9 log t
and bn+2 >

1
3 t

2/9 log−3 t. In other words, these n have

bn ≤ t1/3, bn+2 ≤ t1/3 and bnbn+2 >
1
3 t

4/9 log−2 t.

By an easy variant of the argument giving Lemma 3, these n contribute

¿ t5/9 log3 t+ t2/3 ¿ t2/3.

A similar argument can be used to get the same bound for those n with bn+1 > t2/9.
The remaining n have bn, bn+1 ≤ t2/9. By (6), bn−1 ≥ 1

3 t
1/9 log−2 t and

1
9 t

4/9 log−4 t ≤ bn−1bnbn+1 ≤ t5/9 log t.

The number of such n is

(7) ¿
∑

1
9 t

4/9 log−2 t≤m≤t5/9 log t

(
t

m2
+ 1
)
d3(m)

where d3(m) denotes the number of ways of writing m as a product of three factors.
Using the trivial estimate

∑
m≤x d3(m) ¿ x log2 x and partial summation, we see

that (7) is
¿ t5/9 log4 t¿ t2/3.

This concludes the proof.
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