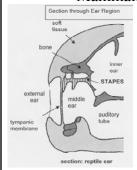
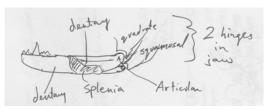

Overview of Changes in Skull Morphology

	Ear Bones	Hinge	Jaw Bone
Mammals	3	Sq/D	Dentary
Early Mammals*	3	Sq/D	Dentary
Therapsida**	1	2 hinges	several bones
Pelycosauria**	1	2 hinges	several bones
Reptiles	1	Q/Art.	several bones

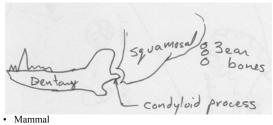

^{*}Note: Early mammals include: Morganucodonts, Triconodonts, Multituberculates, and Pantotheres

Mammalian Evolution

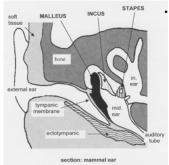
- Reptile
 - 1 ear bone = hyomandibular (or stapes)
 - quadrate-articular jaw hinge


Mammalian Evolution

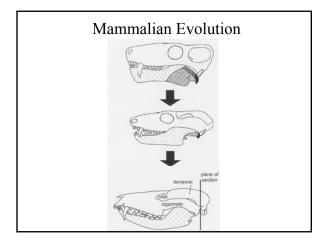
Reptile1 ear bone = stapes

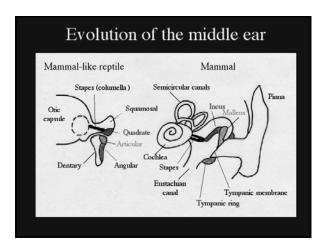

^{**}Note: <u>Therapsida</u> are advanced & <u>Pelycosaurs</u> are primitive mammal-like reptiles. Together they are called <u>Synapsida</u> or <u>synapsid reptiles</u>.

Mammalian Evolution

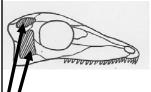

- Mammal-like Reptile : Order Therapsida (therapsids)
 - 1 ear bone = hyomandibular (or stapes)
 - double jaw hinge on each side

Mammalian Evolution

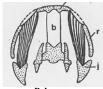


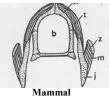

- - 3 ear bones = stapes, malleus, incus
 - dentary-squamosal jaw hinge
 - malleus originates from reptilian articular; incus originates from reptilian quadrate; stapes from reptilian stapes

Mammalian Evolution


- Mammal
 - 3 ear bones = stapes, malleus, incus
 - ectotympanic = tympanic bullae

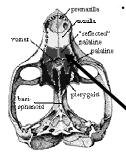
Changes in The Skull Figure 3-1. An anapoid shall (see nurfe, Chelonate). Note the unbroken shield of bone in the tranporal region. • Anapsid skull - no temporal openings or windows — primitive reptile design • Parapsid skull - window up high for muscles to pass through — marine reptile pattern


Changes in The Skull



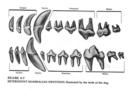
- Diapsid skull 2 temporal openings for muscle play
 most reptiles & dinosaurs
- Synapsid skull window down low
 - mammal-like reptiles (synapsids) & mammals

Changes in The Skull

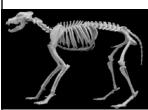


lycosaur

- Why did temporal openings originate?
 Some possibilities:
 - 1) new attachment points for adductor muscles (e.g., masseter muscles)
 - 2) skull weight reduction


Mammalian Evolution

- Generalized Trend in Evolution of Therapsids:
 - 1) enlargement of temporal openings
 - 2) adductor muscles attach to outer surface & zygomatic arch region
 - 3) secondary palate formation, like mammals (significance?)


Figure 7. Probainognathus in palatal view. Modified from Carroll (1988)

Mammalian Evolution

- Generalized Trend in Evolution of Therapsids:
 - 4) heterodont dentition
 - 5) dentary bone expands...precursor to dentary-squamosal hinge
 - 6) simplification/fusion of skeletal structure

Mammalian Evolution

- Generalized Trend in Evolution of Therapsids:
 - 7) elongation of limbs; more slender limbs shifted ventrally
 - 8) beginnings of endothermy
 - 9) diaphragm developing (lumbar ribs reduced)

Cynodonts

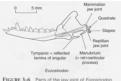
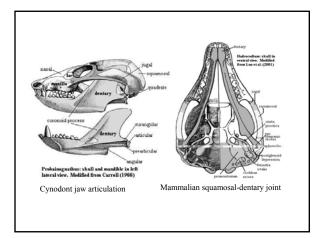
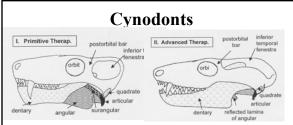
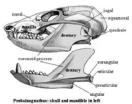




FIGURE 3-6 Parts of the jaw joint of Eozostrodo viewed from the medial side. (From Crompton and Jenkins, 1979)

A Special Groups of therapsids....the Cynodonts

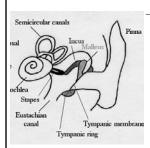
- Group of mammal-like reptiles from which mammals evolved
- Retain characteristics of other therapsids:
 - 1) 1 ear bone
 - 2) 2 jaw hinges
 - 3) several jaw bones
- Most mammal-like in anatomical/structural features



- **Jaw Articulation of Cynodonts**
 - transitional stages of development approaching the classic mammal jaw hinge
 - quadrate-articular & new, second jaw joint (prevention of jaw unhinging/displacement; acts as a bracing point)
 - formation of glenoid fossa (depression in squamosal for articulation) - fits with a lower jaw bone

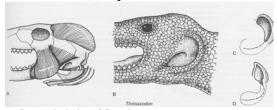
Cynodonts

• Jaw Articulation of Cynodonts


Reduction of postdentary bones (e.g., articular, quadrate, angular); hearing

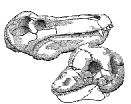
Enlargement of dentary bone & beginning to form squamosaldentary articulation; brace point

Cynodont jaw articulation


Cynodonts

· Jaw Articulation of Cynodonts

- Postdentary bones became smaller and detach from the dentary to be enclosed in a tympanic bulla = beginnings of the mammalian ear with 3 ear bones
- articular bone = malleus ("hammer")
- quadrate bone = incus ("anvil")
- angular bone = tympanic bulla


Cynodonts

- Jaw Articulation of Cynodonts
 - Unique advancement among cynodonts = new attachment for masseter muscles,
 - i.e., attach along zygomatic arch and lateral surface of dentary = advanced function

Cynodonts

• Cynodont Dentition Characteristics:

 Beginnings of heterodonty; progresses jaw muscle changes

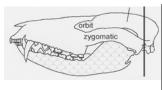
large incisors-canines & small premolars-molars (primitive cynodont)

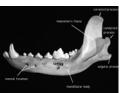
large incisors, canines, premolars, and molars (advanced cynodont & early mammal)

premolars & molars not differentiated

• Cynodont Dentition Characteristics:

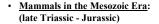
- new teeth erupt between older teeth – continual (~6 generations of replacement)
- stage set for molar evolution = tricodont teeth
- Cynodont Skeletal Feature:
 - lateral flexure of vertebral column


Early Mammals



- Early Mammals(late Triassic-Jurassic)
- monophyletic evolution from cynodonts
 - Morganucodonts
 - Triconodonts (ancestors of monotremes)
 - Multituberculates
 - Symmetrodonts
 - · Pantotheres (ancestors of marsupials & eutherians)

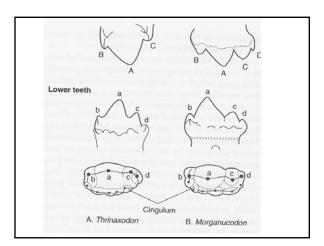
Early Mammals


- Some Advances over Cynodonts:
 - 1) increase in brain size = increased hearing/olfaction
 - 2) dentary-squamosal jaw hinge (only 1 jaw hinge)
 - 3) differentiated premolars & molars diphyodont teeth, single replacement - indicative of change in reproduction, namely lactation

Early Mammals

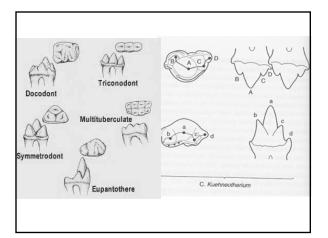
- Some Advances over Cynodonts:
 - 4) fusion of pelvic girdle
 - 5) dorsoventral flexure of vertebral column - useful in locomotion*
 - 6) increased neuromuscular control -allowed greater niche separation, e.g., arboreal
 - 7) endothermy, hair, mammary glands

Early Mammals


- 1st significant adaptive radiation in early (archaic) mammals
- Several early radiations from cynodonts, but most are "deadends" in evolution
- We look briefly at the 2 major lines which lead to modern mammals (simplified vs. complex view)

Early Mammals

• Two groups of early mammals:


- 1) Morganucodontidae (origin of monotremes)
 - · triconodont molars
- Morganucodonts early off-shoot in late Triassic
- Triconodonts
- Multituberculates 1st mammal herbivores, disappear in early Tertiary Period

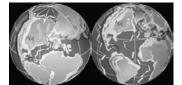
Early Mammals

• Two groups of early mammals:

- 2) Kuehneotheriidae (origin of marsupials & eutherians)
 tribosphenic molars
 - Symmetrodonts late Triassic to late Cretaceous
- Pantotheres late Jurassic, later split into metatheria & eutheria

Early Mammals Duration Duration Duration Duration Duration Duration Duration Mesozott Mesozott Genozoic Genozoic

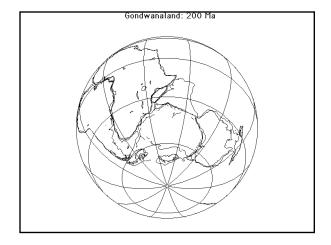
- Era: Mesozone (245-66)

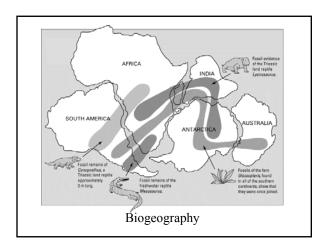

 Mammals in the Cretaceous Period:
 - 1) Extinction of dinosaurs
 - 2) tremendous drift of land masses = numerous island land
 - Basic mammal design refined through natural selection (speciation derived from predation, competition, geographic isolation, coevolution with angiosperms)
 - leads to increased diversity in foraging, reproductive, thermoregulation strategies

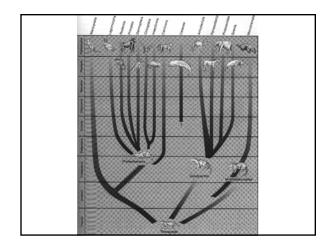
Early Mammals

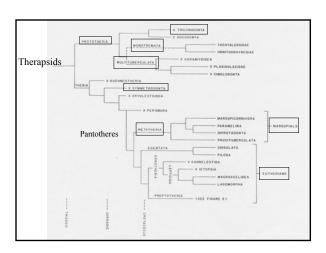
• Mammals in the Cretaceous Period:

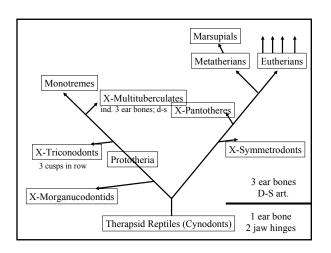
(66-0)


 Stage set for huge adaptive radiations in mammals during the Cenozoic Era






Cretaceous


Tertiary

