Biotic and abiotic chemical transformations

Much of the previous information regarding contaminant fate assumes little or no degradation.

A) Biotic transformations

 Principle of infallibility

B) Types of microorganisms

 Bacteria

 Mineralization

 Detoxification

 Methylation

 Fungi

 Lignin peroxidase

 Methylation

 Algae

 Biosorption

 N-removal

 Other "large" eukaryotes also help to breakdown contaminants
C) Nutritional classification of microbes

<table>
<thead>
<tr>
<th>Group</th>
<th>Energy</th>
<th>C source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photoautotrophs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photoheterotrophs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemoheterotrophs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemolithoautotrophs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D) Metabolism

<table>
<thead>
<tr>
<th>Type</th>
<th>e- donor</th>
<th>Terminal e- acceptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fermentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>aerobic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>anaerobic</td>
<td></td>
</tr>
</tbody>
</table>

E) Energetics of chemical transformations

Typically, organic contaminants serve as an electron donor

\[\text{CH}_2\text{O} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}^+ + \text{e}^- \]
Electron acceptors listed in order of energy gain

\[\text{O}_2 \rightarrow \text{H}_2\text{O} \]

\[\text{NO}_3^- \rightarrow \text{N}_2 \]

\[\text{NO}_3^- \rightarrow \text{NO}_2 \]

\[\text{Fe}^{3+} \rightarrow \text{Fe}^{2+} \]

\[\text{SO}_4^{2-} \rightarrow \text{H}_2\text{S} \]

\[\text{CO}_2 \rightarrow \text{CH}_4 \]
F) Biochemistry of organic contaminant degradation

In order for an organic contaminant to be mineralized it must be converted into a compound involved in the central metabolic pathways.

1) Glycolysis
2) Krebs cycle
3) e- transport system
Example 1. Beta-cleavage of alkanes
Example 2. Degradation of aromatics
G) Recalcitrant compounds

1) Unsaturated and substituted alkanes

2) Increased number of rings

- Benzene
- Naphthalene
- Phenanthrene
- Chrysene
- Benzo[a]pyrene
3) Substituted halogens

 Aerobic respiration

 Reductive dechlorination

 Cometabolism

4) Substituted nitro groups