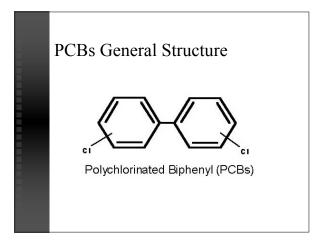
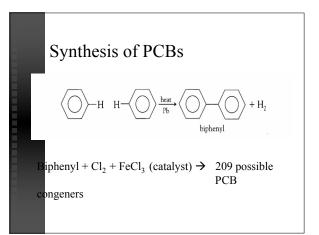
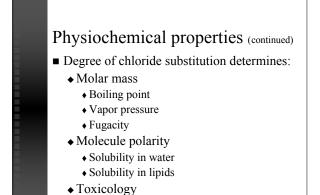

Note to students: This presentation received a 50/50 as graded by me and their fellow students. Keep the grade also reflects things you didn't see (delivery, presentation, tion, etc.). The content was very good, the chemistry concepts were divery well, and the delivery was great. The students really rated this one tight and were impressed that this person chose to do it alone. Greg


PCBs and the Great Lakes


PCBs and the Great Lakes

Me Introduction

- Toxicology
- Regulation
- The Impact on the Great Lakes
- transferrent Debates €



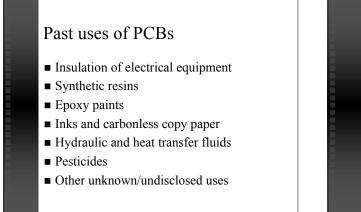
Physiochemical Properties

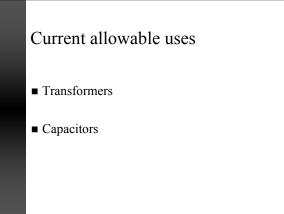
- Individual PCBs are solids at room temp.
- Mixtures are liquids/low melting-point solids
- High boiling point
- Low conductivity
- Flame retardant

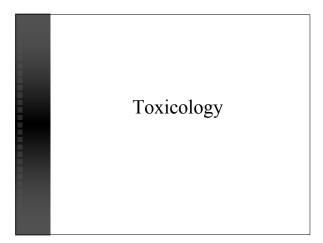
Physiochemical properties (continued)

- Low vapor pressure
- Very low solubility in water
- Soluble in hydrophobic substances
 - ♦ Lipids
 - ♦ Oils
 - Suspended particles in water
- Chemical stability
 - Resistant to chemical & biological degradation

Sample Congener Properties

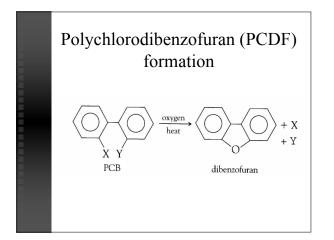

IUPAC No.			vo Selected PCB Conge 2',3,4- Trichlorobiphenyl PCB33	2,2',3,4,5,5',6- Heptachlorobipheny PCB185
Molar mass	M,	(g mol ⁻¹)	257.5	395.4
Air-water partition constant		0		
at 15°C ^a	$K_{a'w} = K_H / RT$	()	0.003	0.007
Air-water transfer velocity	n _{a/w} = n _H , m			
Air-water transfer velocity Air ^b	V.	(m d ⁻¹)	450	390
Air Water ^b	va Vw	(m d-1)	0.67	0.58
	vw Valw	(m d ⁻¹)	0.45	0.48
Total, Eq. 20-3	$k_{a/w} = v_{a/w} / h$	(yr-1)	1.10	1.17
Air-water exchange rate	C_a	(mol m ⁻³)	1.8×10^{-13}	1.2×10^{-14}
Atmospheric concentration ^a	K _{aw}	(-)	6.0×10 ⁵	2.0×10^{7}
Octanol-water partition constant	V ^{OW}	(-)		
Natural organic matter-water partition coefficient	Koc	$(m^3 k g_{oc}^{-1})$	27	360
Distribution coefficient Suspended solids ^c	K _d	(m ³ kg ⁻¹)	5	70
Suspended solids ^c	K _{ds}	(m ³ kg _s ⁻¹)	0.8	10
Fraction dissolved in the water column, Eq. 9-12	f _w	(-)	0.998	0.973
Total input rate of PCB congener ^d	I_{t}	(mol yr ⁻¹)	100	30


Persistence in aqueous environments


- Low water solubility
- High lipid solubility (hydrophobic)
- Low vapor pressure
- High boiling point
- Low fugacity
- PCBs are <u>persistent organic pollutants</u> (POPs)

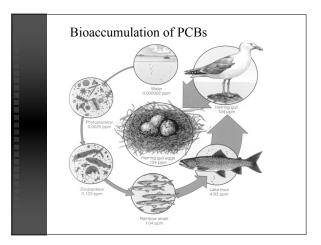
Sources of PCBs

- Exclusively anthropogenic
 No natural sources
- Intentional Production
 - ◆ 700,000 tons of PCBs produced (1929-1977)
- Unintentional Production
 - \bullet By products of chemical processes



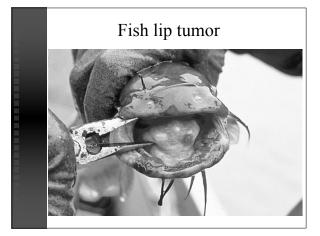
Acute Toxicology

- Coplanar PCBs of greatest concern
- Most toxic PCB:
 - ◆ 3,3',4,4',5'-pentachlorobiphenyl
 - ◆ Similar in size and shape as 2,3,7,8-TCDD
 - $\bullet \sim 1/10^{\text{th}}$ as toxic as TCDD
- PCBs can oxidize to give the potentially more toxic polychlorodibenzofurans (PCDFs)



Acute Toxicology (continued)

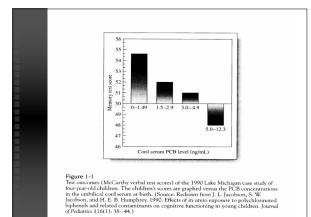
- Greatest exposure risk:
 - ◆ Electrical industry workers
 - Chemical processing plant personnel


Chronic Toxicology

- Nonplanar PCBs
 - Higher abundance relative to coplanar PCBs
- Greatest human exposure source:
 - \blacklozenge Fish and shellfish consumption
 - A consequence of bioaccumulation

Fish Toxicology

- 4 ppm PCBs in trout and salmon:Goiter
 - ◆ Impaired metabolism
 - ◆ Reproduction problems
 - ♦ Tumors

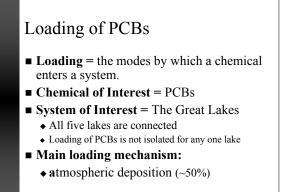


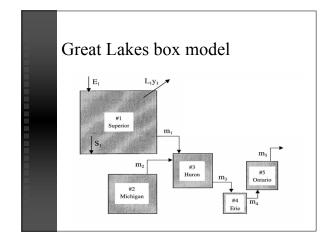
Laboratory animal tests

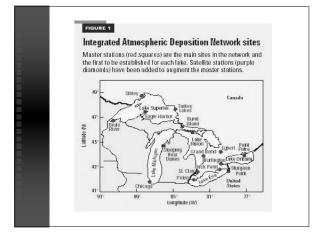
- PCB exposure can cause:
 - ◆ Cancers/tumors
 - ♦ Birth defects
 - ◆ Reproductive deficiencies
 - Liver and gastric tract disorders
 - ◆ Eye/vision degeneration

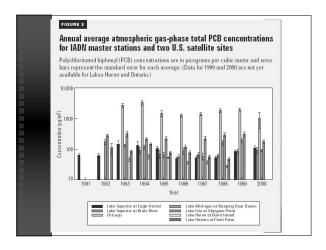
Human health effects

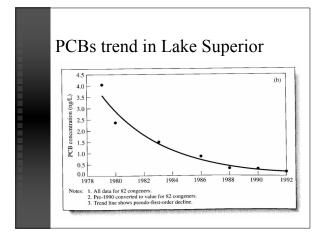
- PCBs stored in lipid tissues
 Minimal excretion or metabolism
- Effects on laboratory animals may correlate to humans.
- Primary concerns:
 - ♦ Carcinogenic effects
 - Reproductive effects
 - ◆ Cognitive development in children

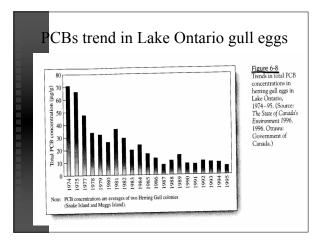


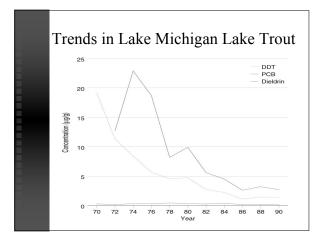

Regulation

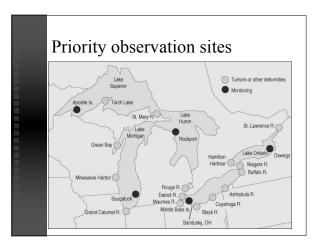

Regulation of PCBs


- Toxic Substances Control Act (TSCA)
- Clean Air Act
 - ◆ PCBs are Hazardous Air Pollutants (HAPs)
- Clean Water Act
- Safe Drinking Water Act
 - ◆ Maximum concentration of 0.5 ppb
- Department of Agriculture
 - \blacklozenge Protection of food products


Impact on the Great Lakes







Current Debates

Current Debates over PCBs

■ Opinion 1:

- ◆ The dangers of PCBs are wildly overstated
- ◆ No human deaths directly linked to PCBs
- Regulation and monitoring is expensive
- Opinion 2:
 - Biomagnification is a problem
 - ◆ High relative toxicity per molecule
 - Ubiquitous distribution impacts nearly all environments

Bibliography

- , C. Environmental Chemistry, 2^{nd} ed. New York: W.H. Freeman and ompany, 2001.
- er, S.S. and R.A. Hites. The Great Lakes Integrated Atmospheric eposition Network. <u>http://pubs.acs.org/subscribe/journals/esthag-</u> <u>36/free/902hites.pdf</u> 17 March 2003.
- pined Research Curriculum Development Program, Dame Department of Chemical Engineering:
- p://www.nd.edu/~enviro/pdf/PCBs_Great_Lakes.pdf 29 March 2003. esselberg, R.J.

- asseriuerg, R.J. nal Biological Service, Great Lakes Science Center. <u>tp://biology.usgs.gov/s+t/noframe/m2131.htm</u> 17 March 2003. , M.A.Q. University of Illinois at Chicago Department of Biological piences.<u>http://tigger.uic.edu/~magkhan/LAS100/GreatLakesPollution.html</u> March 2003.
- T.G. Environmental Science, 5th ed. Belmont, CA: Wadsworth, Inc, 195. Schwarzenbach, R.P., P.M. Geschwend, and D.M. Imboden.
 bornental Organic Chemistry, 2nd ed. Hoboken, NJ: John Wiley & Sons, 03.
 EPA websites:
- www.epa.gov/glnpo/bnsdocs/pcbsrce/pcbsrce.html 17 March 2003 tp://www.epa.gov/glnpo/sediment/gpra/index.html 17 March 2003