BIO 365 Environmental Contaminants

Review material for test I - Water, Soil and Atmospheric chemistry

This test will cover the basics of water, soil and atmospheric chemistry.

My suggestions for the test:

- 1) You should be comfortable with the review problems that we went over on the first day of class.
- 2) Make sure you understand what is covered in the notes (problems we worked through in class, concepts, etc.)
- 3) Be able to work through the problems that I listed in the chapters (9-1; 9-22; etc.). They are given below.
- 4) You should be able to convert values readily (ppm molarity mg/L)

I will post the answers for the chapter questions and the following questions.

Water chemistry

Baird Problems 9-1, 4, 8, 10a, 11, 22

Review 2, 3, 4, 5, 7, 8, 11, 12, 20

What is the oxidation state of C, N or S in the following compounds?

NH₄⁺, NH₃, NO₂⁻, N₂O, NO, NO₃⁻

SO₄², H₂S, H₂SO₄, H₂SO₃, SO₂

Write half reactions for the following balanced equations and be able to determine the oxidation states of the atoms involved.

$$\text{CH}_2\text{O} + \text{O}_2 \longrightarrow \text{CO}_2 + \text{H}_2\text{O}$$

Determine the pH of the following solutions

0.02 M HCl (strong acid)

0.02 M H₂SO₄ (H₂SO₄ is a strong acid, however HSO₄ is a weak acid and its dissociation is insignificant)

0.02 M NaOH (strong base)

 $0.5\,\mathrm{M}$ solution of $\mathrm{HNO_3}$ (a weak acid whose $\mathrm{K_a}$ is $4.5\;\mathrm{x}\;10^4)$

0.5 M solution of HNO₃ (a weak acid whose
$$K_a$$
 is 4.5 x 10°)

4.5 x 10⁻⁴ = $(H^+)[NO_3]$ (0.5) · 4.5 x 10⁻⁴ = $(H^+)^2$ = 2.25 x 10⁻⁴

0.05 M solution of N_2H_4 (a weak base whose K_b is 9.8 x 10⁻⁷)

$$9.8 \times 10^{-7} = (N_z H_z^{\frac{1}{5}}) (OH^{-\frac{1}{3}}) (O.05) \cdot 9.8 \times 10^{\frac{1}{7}} = (OH^{-\frac{1}{3}})^{\frac{1}{3}}$$

$$P(OH) = 3.65 \quad PH = 10.35$$

Make sure you understand the pE concept and what a high or low pE represents.

Be familiar with the concept of carbonate equilibrium.

What is alkalinity and what does it represent?

For the reaction: BaSO₄ --> Ba²⁺ + SO₄²⁻

$$K_{sp} = 1.23 \times 10^{-10} = [Ba^{2+}] [SO_4^{2-}]$$
 $So... [Sa^{27}] = [SO_4^{2-}]$

What is the concentration of sulfate in a solution saturated with BaSO₄ in M? in g/L?

1.23 × 10⁻¹⁰ =
$$\left[\le 0y^2 \right]^2$$

1.11 × 10⁻⁵ = $\left[\le 0y^2 \right]^2$

Why does Al solubility increase by 3 orders of magnitude with a single unit pH decrease?

$$A1[OH]_3 \leftrightarrow A1^{3+} + 30H^-$$

 $Ksp = [A1^{3+}][OH^-][OH^-] = 10^{-33}$

Soil Chemistry

Baird Problems 12-3

Review 13, 14, 15,

How do increases/decreases in soil pH influence AEC and CEC?

Expect to have a problem similar to the septic tank example that I worked through in class.

In what ways can soil organic matter influence the movement of polar and non-polar contaminants?

Atmospheric chemistry

Baird problems 1-8, 9, 12

Review 10, 11, 12, 14,

Baird problems 2-11

Review 8

 CO_2 is present in the atmosphere at concentrations over 200x that of CH_4 and over 1100x that of N_2O . Why are we concerned with the rise in the levels of the others?

What is the pH of CO₂ saturated rain water?

Henry's Law: $[H_2CO_3] = K_H \times P_{CO2}$

 $K_{\rm H} = 3.4 \ x \ 10^{\text{-2}} \ mol \ L^{\text{-1}} \ atm^{\text{-1}}$

 $P_{CO2} = 0.00036$ atm

 $K_a = [H^+][HCO_3^-] / [H_2CO_3] = 4.5 \text{ x } 10^{-7} \text{ mol } L^{-1}$

 $(H_2CO_3) = 3.4 \times 10^{-2} \text{ mol} \times 0.00036 \text{ atm}$ = 1.2 × 10⁻⁵ mol

What would the pH be if the atmospheric [CO₂] quadruples?

If H_2SO_4 and HNO_3 influence the acidity of rain, why is there concern over atmospheric levels of SO_2 and NO_x (both of which are not very soluble in water)?

If the first step in the destruction of ozone is: $NO^{\bullet} + O_3 -> NO_2^{\bullet} + O_2$

And the overall reaction is: $O_3 + O --> 2 O_2$

What is the second step (what happens to the NO_2^{\bullet} produced in the first step)?

How does a single Cl* destroy so much ozone?

Where is ozone formed and why? How is it destroyed?

9-11

$$Pt = 5.5 \sim poH = 8.5$$

$$[OH^{-}] = 3.2 \times 10^{-9} \text{ m}$$

$$[Al^{3+}][OH^{-}]^{3} = 10^{-33}$$

$$[Al^{3+}] = \frac{10^{-33}}{(3.2 \times 10^{-9})^{3}} = 3 \times 10^{-8} \text{ m}$$

12.3

3:3:2 ~ C3 H3 Oz

1-9

1-12

2-11