1) Review problems

- 2) Review oxidation state rules
- 3) Go over log and exponent rules
- 4) Half reaction example
- 5) Water Chemistry

1) REVIEW PROBLEMS

2) OXIDATION STATE RULES

H almost always has a charge of +1

Except: H₂

O almost always has a charge of -2

Except: O₂

 H_2O_2 -1 (see rule 1)

So, if a compound has no overall charge then all charges must cancel.

HCl

 H_2SO_4

HNO₃

If a compound has a charge the overall charge must be the end result.

 $\mathbf{NH_4^+}$

 NO_3^-

Cr₂O₇²⁻

3a) LOGARITHM RULES

 $\log 10^a = a$

 $\log (\mathbf{b} * \mathbf{c}) = \log \mathbf{b} + \log \mathbf{c}$

 $\log (b / c) = \log b - \log c$

Solve (with and without calc.)

log 10 log 10^{-6} log 10^{50} -log 100 log x = 2

3b) EXPONENT RULES

$$\mathbf{a}^{b} * \mathbf{a}^{c} = \mathbf{a}^{b+c}$$

 $\mathbf{a}^{b} / \mathbf{a}^{c} = \mathbf{a}^{b-c}$
 $(\mathbf{a}^{b})^{c} = \mathbf{a}^{b*c}$

4) HALF REACTION EXAMPLE

 $\mathbf{H}_2 + \mathbf{O}_2 = \mathbf{H}_2 \mathbf{O}$

Balanced (easy one)

 $2H_2 + O_2 = 2H_2O$

Oxidation states?

How many electrons are transferred?

 $O_2 + 4e^- + 4H^+ = H_2O$

 $2H_2 = 4H^+ + 4e^-$