ATMOSPHERIC CHEMISTRY

A) What is global warming all about?

CO₂ CH₄ N₂O

B) First a review

Low pH of rain

1) Carbonic acid production due to atmospheric CO₂.

2) Further lowered by SO₂...

3) ...and NO₂.

C) Chemical reactions in the atmosphere

The most important reactive intermediate species in atmospheric chemical processes is the hydroxyl radical (OH') formed by:

1) photochemical decomposition of ozone ...

 $O_3 + h\nu \rightarrow$

* indicates an excited molecule (temporarily reactive)

... which reacts with water

 $O^* + H_2O \rightarrow$

• indicates a free radical (unpaired e-)

2) direct hydrolysis of water

 $H_2O + h\nu \rightarrow$

The concentration of OH' in the atmosphere is very small, how can it be so important?

 $CH_4 + OH^* \rightarrow$ NH₃ + OH^{*} → H₂S + OH^{*} → CH₃Cl + OH^{*} →

These reactions are all ______ and occur very rapidly.

The resultant radicals can then interact with other radicals, sometimes forming more OH' and generating other radicals

Examples:

 CH_3 + CH_3 >

 $CH_3 + O_2 \rightarrow$

Other important radicals

Methylperoxyl radical

Hydroperoxyl radical

D) Atmospheric oxidation of methane to CO₂

Initiated by the rxn:

 $\mathrm{CH}_4 + \mathrm{OH}^{\scriptscriptstyle\bullet} \xrightarrow{}$

Overall rxn:

 $CH_4 + 5O_2 + 5NO^{\bullet} + UV-C \rightarrow$

The result is an overall increase in radicals that can interact with other atmospheric gases.

E) Ozone

I Creation of ozone (Fig. 1-5)

Layers in atmosphere:

Troposphere -

Stratosphere -

Formation of O above the stratosphere

 $O_2 + UV-C \rightarrow$

Ozone formation occurs in the stratosphere. Why?

$0 + 0_2 \rightarrow$

The ozone layer exists between 15 - 35 km above ground.

II Noncatalytic destruction of ozone (Chapman cycle Fig. 1-12)

 $O_3 + UV \rightarrow$

 $0 + 0_3 \rightarrow$

III Catalytic destruction of ozone

Naturally occurring nitrous oxide

 $N_2O + O^* \rightarrow 2NO^*$

Overall rxn?

So how does increasing N_2O concentrations influence ozone?

IV Chlorine as a catalyst

Where does Cl[•] come from?

Initial sources: methyl chloride; production of chlorinated gases (such as CFCs)

 $HCl + OH \rightarrow$

 $CH_3Cl + UV-C \rightarrow$

 $CIONO_2 \rightarrow$

What is the overall rxn for the destruction of ozone by Cl'?

Note that Cl[•] is regenerated.

The avg Cl[•] destroys 10,000 ozone molecules.