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AbstractWe discuss Hilbert-Kunz function from when it was originally defined to
its recent developments. A brief history of Hilbert-Kunz theory is first recounted.
Then we review several techniques involved in the study of Hilbert-Kunz functions
by presenting some illustrative proofs without going into details of the technicalities.
The second part of this article focuses on the Hilbert-Kunz function of an affine

normal semigroup ring and relates it to Ehrhart quasipolynomials. We pay extra
attention to its periodic behavior and discuss how the cellular decomposition con-
structed by Bruns and Gubeladze fits into the computation of the functions. The
closed forms of the Hilbert-Kunz function of some examples are presented. The dis-
cussion in this part highlights the close relationship between Hilbert-Kunz function
and Ehrhart theory.

1 Motivation and Outline

In the 1960s, Kunz [62] introduced a function in order to study the regularity of
integral domains. Monsky named this function after Hilbert and Kunz in [72, 1983].
Despite its close resemblance with the usual Hilbert-Samuel functions, Hilbert-Kunz
functions, in many ways, behave very differently and are highly unpredictable.
The main aim of this article is to provide an overview of the development of

Hilbert-Kunz functions in the recent decades, and to link Hilbert-Kunz theory to
Ehrhart theory that may potentially provide accessible tools to investigate Hilbert-
Kunz functions for certain families of interesting rings and varieties.
In the 1990s, a series of works were done for algebraic curves by Buchweitz,

Chen, Han, Monsky, and Pardue ([48, 82, 19, 73, 74, 75] in chronological order).
They considered projective plane curves whose homogeneous coordinate rings are
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of the form of 𝑘 [𝑥, 𝑦, 𝑧]/(𝑔). Hypersurfaces in higher dimensions were considered
by Han and Monsky [47, 48], Chang [27], Chiang and Hung [29]. In addition, Seib-
ert [94] worked on the Cohen-Macaulay rings of finite representation type. These
studies revealed some unpredictable behaviors and mysterious nature of Hilbert-
Kunz functions. Starting from the early 1990s, they have been investigated in waves
of studies from different points of view with a variety of machinery. For instance,
Han and Monsky developed the theory of representation rings that provided a means
to compute these functions for diagonal hypersurfaces. Brenner, Frakhruddin and
Trivedi studied the subject using sheaf theory ([10, 11, 41]) and gave a systematic
treatment for the case of smooth algebraic curves. Kurano linked algebraic intersec-
tion theory with Hilbert-Kunz function and produced an expression of the function
in terms of local Chern characters ([65, 66]). Bruns and Watanabe offered a strong
insight into Hilbert-Kunz function and multiplicity and proved that the computations
in the setting of normal affine semigroup rings can be understood via Ehrhart theory
([16, 113]). Nevertheless, it is in general difficult to compute Hilbert-Kunz function
and its associated multiplicity. However, in light of Ehrhart theory and effective
computer algebra systems developed in recent years, it is likely that we will be able
to formulate accessible questions regarding Hilbert-Kunz functions.
In comparison, many more studies have been done for Hilbert-Kunz multiplicity

than its functional counterpart. The literature concerning Hilbert-Kunz multiplic-
ity alone is a rich entity, and it is beyond the scope of this manuscript to give a
comprehensive account. The discussions in this paper are mainly focused on the
functions. While making no attempt to be complete, we mention some results on the
multiplicity that are relevant to Hilbert-Kunz functions and link as many relevant
scholarly works as possible.
Valuable overviews of Hilbert-Kunz theory can be found in [13] by Brenner that

offers a very rich source for the subject, and in [57] by Huneke which provides
alternative approaches to many results different from the original proofs.
The outline of the paper is as follows. Sect. 2 introduces the definitions and a

brief history of the theory. While presenting interesting questions arising from the
literature, we also address how Hilbert-Kunz theory is related to other important
notions and studies in commutative algebra. Sect. 3 reviews some of the techniques
applied to the studies of Hilbert-Kunz functions. These include representation rings
and 𝑝-fractals ([47, 48, 103, 80, 81]), divisor class groups ([59, 24]), the cohomology
of vector bundles ([10]), intersection theory ([65, 66]), and cellular decompositions
on the fundamental domain ([16]). We pay close attention to the key steps and
extract the crucial facts that contribute to establishing the targeted results. Readers
may skip the subsection regarding each technique and return to it as needed. We are
hopeful that our sketches may be helpful to those who wish to access the ideas in
these proofs. Sect. 4 is dedicated to normal affine semigroup rings. In this setting,
Hilbert-Kunz function is closely related to the lattice point enumerator as shown
first in Watanabe [113]. Bruns [16] builds a pathway that bridges the Hilbert-Kunz
and Ehrhart theories in a rigorous manner. This idea will be elaborated in this
section. Sect. 5 includes examples done by counting lattice points or estimating with
Macaulay2. Most examples presented in Sect. 5 and comments about the techniques
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made throughout Sections 3, 4, 5 are due to the author’s own studies and observations.
They can serve as starting points for further rigorous investigations.

2 History in Brief

Throughout this paper, 𝑝 denotes a prime number and 𝑒 denotes a nonnegative
integer which is often the argument of functions under consideration. Let (𝑅,𝔪)
be a 𝑑-dimensional local ring of positive characteristic 𝑝. For any ideal 𝐼, let 𝐼 [𝑝𝑒 ]
denote the ideal generated by elements of the form of 𝑎𝑝𝑒 for all 𝑎 ∈ 𝐼. Since 𝑅 has
characteristic 𝑝, 𝐼 [𝑝𝑒 ] can in fact be generated by the 𝑝𝑒-th power of the elements in
any given generating set of 𝐼. The ideal 𝐼 [𝑝𝑒 ] is called the 𝑝𝑒-th Frobenius power of
𝐼 and is an 𝔪-primary ideal if 𝐼 is 𝔪-primary. All modules in this paper are finitely
generated.
The Frobenius map 𝑓 : 𝑅 → 𝑅 takes 𝑟 ∈ 𝑅 to 𝑓 (𝑟) = 𝑟 𝑝 and is a ring

homomorphism. Naturally one may consider 𝑅 as a module, denoted by 1𝑅, over
itself via restriction of scalars along 𝑓 . When 𝑅 is reduced, 𝑓 is injective so 𝑅 is
isomorphic to its image 𝑅𝑝 . In that case, one can equivalently consider 𝑅 as a module
over the subring 𝑅𝑝 which is how Kunz viewed it. Thus as an abelian group, 1𝑅 is
equal to 𝑅 but its module structure is given by 𝑟 · 𝑎 = 𝑟 𝑝𝑎 for all 𝑟 ∈ 𝑅 and 𝑎 ∈ 1𝑅.
We say 𝑅 is 𝐹-finite if the Frobenius map 𝑓 is a finite morphism. (See Miller [68]
for a general background regarding the Frobenius endomorphism.)
In 1969, Kunz proved that the flatness of 𝑅 as an 𝑅𝑝-module characterizes its

regularity. Precisely, Kunz [62] proved that 𝑅 is regular if and only if it is a reduced
flat module over 𝑅𝑝 . In fact his proof can be extended to show that the following
are all equivalent without the reduced condition: (1) 𝑅 is regular; (2) the composed
homomorphism 𝑓 𝑒 is flat for all positive integers 𝑒; (3) 𝑓 𝑒 is flat for some positive
integer 𝑒 (c.f. [61, Theorem 21.2]). Kunz achieved this by studying the numbers
ℓ(𝑅/𝑚 [𝑝𝑒 ]) as 𝑒 increases and by applying Cohen’s structure theorem for complete
local rings. In particular, we have

Theorem 2.1 (Kunz [62], 1969) Let 𝑅 be a Noetherian local ring of dimension 𝑑.
Then 𝑅 is regular if and only if ℓ(𝑅/𝑚 [𝑝𝑒 ]) = (𝑝𝑒)𝑑 .

Let 𝑀 be a finitely generated 𝑅-module and 𝐼 an 𝔪-primary ideal. In 1983,
Monsky [72] called the function 𝜑𝑀,𝐼 (𝑒) : Z≥0 → Z

𝜑𝑀,𝐼 (𝑒) : 𝑒 −→ ℓ𝐴(𝑀/𝐼 [𝑝𝑒 ]𝑀)

the Hilbert-Kunz function of 𝑀 with respect to 𝐼. Although it depends on both 𝑀
and 𝐼, when there is no ambiguity, we will simply write it as 𝜑𝑀 (𝑒). In particular, by
the Hilbert-Kunz function of the ring 𝑅, we mean 𝑀 = 𝑅 and 𝐼 = 𝔪, the maximal
ideal. For a finitely generated 𝑅-module 𝑀 of dimension 𝑑, Monsky also considered
the limit

𝑒𝐻𝐾 (𝑀, 𝐼) := lim
𝑒→∞

𝜑𝑀,𝐼 (𝑒)
(𝑝𝑒)𝑑

(1)
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and proved the following results :

Theorem 2.2 (Monsky [72], 1983) Let (𝑅,𝔪) be a Noetherian local ring of positive
characteristic 𝑝 and dim 𝑅 = 𝑑. Let 𝐼 be an 𝔪-primary ideal and 𝑀 a finitely
generated 𝑅-module of dimension 𝑑. Then

(𝑎) The limit in (1) exists and is always a positive real number.
(𝑏) The Hilbert-Kunz function is of the form of

𝜑𝑀,𝐼 (𝑒) = 𝑒𝐻𝐾 (𝑀, 𝐼) (𝑝𝑒)𝑑 +𝑂 ((𝑝𝑒)𝑑−1).

(𝑐) If 𝑅 is a one-dimensional complete local domain and dim𝑀 = 1, then
𝜑𝑀,𝐼 (𝑒) = 𝑒𝐻𝐾 (𝑀, 𝐼) · 𝑝𝑒 + 𝛿𝑒, where 𝑒𝐻𝐾 (𝑀; 𝐼) is an integer and 𝛿𝑒 is an
eventually periodic function.

In this paper, we write 𝑔(𝑥) = 𝑂 ( 𝑓 (𝑥)) if there is a constant 𝐶 independent of 𝑥
such that |𝑔(𝑥) | ≤ 𝐶 | 𝑓 (𝑥) | for 𝑥 large enough (or 𝑥 � 1).
Monsky named the limit in (1) the Hilbert-Kunz multiplicity of 𝑀 with respect

to 𝐼. The limit is exactly the coefficient of the dominating term (𝑝𝑒)𝑑 in 𝜑𝑀,𝐼 (𝑒).
If 𝐼 = 𝔪, we drop 𝐼 from the notation, and simply write 𝑒𝐻𝐾 (𝑀) and 𝜑𝑀 (𝑒). By
replacing 𝑅 by 𝑅/annih(M), modulo the annihilator of 𝑀 , we may always assume
that dim𝑀 = dim 𝑅 and thus Theorem 2.2 still holds.
Next we recall the familiar Hilbert-Samuel functions which concerns the length

of 𝑀 modulo the usual powers of an 𝔪-primary ideal 𝐼:

𝔥𝑀,𝐼 (𝑛) := ℓ(𝑀/𝐼𝑛𝑀).

The Hilbert-Samuel multiplicity is defined as

𝑖(𝑀, 𝐼) := 𝑑! lim
𝑛→∞

𝔥𝑀,𝐼 (𝑛)
𝑛𝑑

.

There exists a polynomial 𝔭𝑀,𝐼 (𝑛) with rational coefficients so that 𝔥𝑀,𝐼 (𝑛) =

𝔭𝑀,𝐼 (𝑛) for all large enough 𝑛. More precisely,

𝔭𝑀,𝐼 (𝑛) =
1
𝑑!
𝑖(𝑀, 𝐼) 𝑛𝑑 + (lower degree terms in 𝑛).

Also commonly known and studied are the Hilbert functions for graded rings
or modules, and Buchsbaum-Rim function which is the module version of Hilbert-
Samuel function via Rees rings (c.f. [18, 26, 87]). Similar toHilbert-Samuel function,
Hilbert function and Buchsbaum-Rim function are polynomials of 𝑛 for large 𝑛, and
their leading coefficients are always rational numbers.
However, unlike the typical Hilbert-type functions just mentioned, the behavior

of Hilbert-Kunz functions is rather unpredictable as seen in the next two exam-
ples. In Sect. 3, upon the consideration of Theorem 3.2, we will provide some
observations that set apart Hilbert-Kunz functions from Hilbert and Hilbert-Samuel
functions. These observations also show that it is often necessary to consider the
higher (co)homology modules when it comes to Hilbert-Kunz functions.
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Example 2.3 (Kunz [62, Example 4.6(b)], 1969)
Set 𝑅 = 𝜅 [[𝑥, 𝑦]]/(𝑦4 − 𝑥3𝑦) (corresponding to four different lines) where 𝜅 is an
algebraically closed field. Then 𝜑𝑅 (𝑒) = 4𝑝𝑒 − 3, if 𝑝 ≡ 1 (mod 3); and 𝜑𝑅 (𝑒) =
4𝑝𝑒 + 𝛿𝑒, if 𝑝 ≡ −1 (mod 3) where 𝛿𝑒 = −3 if 𝑒 is even and −4 if 𝑒 is odd.

Example 2.4 (Monsky [72, p. 46], 1983)
Set 𝑅 = Z/𝑝 [[𝑥, 𝑦]]/(𝑥5 − 𝑦5) and 𝑝 ≡ ±2 (mod 5). Then 𝜑𝑅 (𝑒) = 5𝑝𝑒 + 𝛿𝑒 where
𝛿𝑒 = −4 if 𝑒 is even and −6 if 𝑒 is odd.

There is no effective algorithm for computing Hilbert-Kunz multiplicity. Hilbert-
Kunz multiplicity was long thought to be rational, but this was proved not to be the
case (see [13]). In general, the question regarding the rationality of Hilbert-Kunz
multiplicity has attracted serious research efforts since the notion was introduced in
[72] and the debate was once a popular pastime for decades. The question regarding
how to effectively compute Hilbert-Kunz function remains widely open.
Hilbert-Kunz function was initially defined for local rings. One may apply the

same definition for graded rings over a field 𝜅 of positive characteristic with respect
to their graded maximal ideals, or affine semigroup rings over such 𝜅 with respect
to the maximal ideals generated by elements in the semigroup. Which case we are
dealing with will be clear from the context in each section or example.

2.1 Multiplicity

Although this article focuses on Hilbert-Kunz functions, it would be incomplete
without touching upon some developments on the multiplicity.
By Theorem 2.1, being regular for a local ring 𝑅 is equivalent to having a nice

Hilbert-Kunz function, which in turn implies 𝑒𝐻𝐾 (𝑅) = 1. Then Kunz asked if
the property 𝑒𝐻𝐾 (𝑅,𝔪) = 1 is sufficient for 𝑅 being regular. This was proved
by Watanabe and Yoshida [114] for unmixed local rings, and also by Huneke and
Yao [60] without using the tight closure techniques as done in [114].
A series of studies regarding various levels of singularities and the estimation of

lower bounds for Hilbert-Kunz multiplicities can be found in the works ofWatanabe,
Yoshida, Blickle, Enescu, Shimomoto, Aberbach, Celikbas, Dao, Huneke, and Zhang
[115, 116, 117, 9, 37, 2, 3, 22].
Another algebraic notion related to singularities is tight closure, introduced by

Hochster and Huneke ([52, 53, 56]). The subjects of tight closure and Hilbert-Kunz
multiplicities share a close relationship. In fact, under somemild conditions, the tight
closure of an 𝔪-primary ideal 𝐼 is the largest ideal containing 𝐼 that has the same
Hilbert-Kunz multiplicity as 𝐼 ([53]). The introduction of [40] by Eto and Yoshida
offers a nice comparison between Hilbert-Kunz and Hilbert-Samuel multiplicities.
It describes a parallel relationship of integral closure to Hilbert-Samuel multiplicity
versus tight closure to Hilbert-Kunz multiplicity. The literature on the relationship
between these two notions is extremely rich. Before leaving this topic,we point out yet
another connection between the two theories. By understanding the semistability of
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vector bundles on projective curves, Brenner brought out the geometric interpretation
of tight closures and successfully solved some open problems in the tight closure
theory (c.f. [12]). This technique has been proved to be effective also in Hilbert-Kunz
theory which will be reviewed in Subsect. 3.3.
As we will see in the next section, it is sometimes natural to consider the Euler

characteristic after applying the Frobenius functor, and the Hilbert-Kunz function
can be expressed in terms of the Euler characteristic. By the singular Riemann-Roch
theorem, Kurano made a connection between the Hilbert-Kunz function with local
Chern characters and proved that the Hilbert-Kunz multiplicity characterizes rings
that are numerically equivalent to Roberts rings. (See Subsect. 3.4 for numerical
equivalence.) In the 1960s, Serre defined the intersection multiplicity in terms of the
Tor-functors ([95]). Several conjectures followed, some of which remain unsolved.
Roberts proved the vanishing conjecture for complete intersections and isolated
singularities by using intersection theory ([85]). Independently, this was also proved
by Gillet and Soulé using 𝐾-theory ([45, 46]). Kurano called a ring 𝑅 a Roberts ring
if the only nontrivial component in the Todd class of 𝑅 belongs to the subgroup of
codimension zero in the Chow group ([64]). This condition is satisfied by rings for
which the vanishing theorem holds in Roberts’ result. If 𝑅 is further assumed to be
a homomorphic image of a regular local ring and also Cohen-Macaulay, then it is
numerically equivalent to a Roberts ring if and only if the Hilbert-Kunz multiplicity
satisfies the condition 𝑒𝐻𝐾 (𝐼) = ℓ(𝑅/𝐼) for any𝔪-primary ideal 𝐼 of finite projective
dimension ([65]).
Going back to the mystery of the multiplicity, Monsky initially suspected that

𝑒𝐻𝐾 (𝑅) should always be rational ([72], 1983). Even though all the examples with
explicitly known Hilbert-Kunz multiplicities do take on rational values, the ques-
tion itself remained stubbornly unresolved. Later, Monsky ([78], 2008) conjectured
otherwise. Eventually Brenner ([13], 2013) constructed a module that has an irra-
tional multiplicity leading to the existence of three dimensional rings with irrational
Hilbert-Kunz multiplicity.
Still it is natural to ask under what conditions or for what family of rings the

Hilbert-Kunz multiplicities are rational. Some of the known cases include

1. Regular local rings (𝑒𝐻𝐾 (𝑅) = 1, Kunz[62]).
2. Complete local domains of dimension one (𝑒𝐻𝐾 (𝑅) ∈ Z, Monsky [72]).
3. Algebraic curves – two-dimensional standard graded algebra over an algebraically
closed field:

• 𝑅 is normal (Brenner [11] and Trivedi [104] independently).
• 𝑅 = 𝑘 [𝑥, 𝑦, 𝑧]/( 𝑓 ) for plane cubics (deg 𝑓 = 3) (Monsky [73, 76, 77, 79],
Buchweitz and Chen [19], Pardue [82]).

4. Hypersurfaces

• Diagonal hypersurfaces (Han and Monsky[47, 48])
• Some special families (Kunz [63]; Monsky and Teixeira [103, 81])

5. 𝐹-finite Cohen-Macaulay rings of finite Cohen-Macaulay type (Seibert [94]).
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6. Full flag varieties and elliptic curves (Fakhruddin and Trivedi [41]).
7. Stanley-Reisner rings and binomial hypersurfaces (Conca [30]).
8. Segre product of polynomial rings (Eto and Yoshida [40]).
9. Segre product of any finite number of projective curves (Trivedi [108]).
10. Normal affine semigroup rings (Watanabe [113]).

In [113], the value ℓ(𝑅/𝐼 [𝑝𝑒 ]) is obtained by counting the lattice points within a
certain relevant region defined by a normal affine semigroup. This approach inspires
our discussions in Sections 4 and 5 for the Hilbert-Kunz functions.
It would be interesting to know what other families, especially in higher dimen-

sions, produce rational 𝑒𝐻𝐾 (𝑅). More generally, what are the hidden conditions or
properties common to these examples?

2.2 Functions

From now on, we will use 𝑞 to denote 𝑝𝑒 unless we want to emphasize its explicit
dependence on 𝑒. If 𝜑 (𝑒) is expressed as a function in 𝑝𝑒, we writeΦ (𝑞) to highlight
this feature, namely, 𝜑 (𝑒) = Φ(𝑞). We will also use 𝛼 in place of 𝑒𝐻𝐾 . Hilbert-Kunz
functions have the following functional form for 𝑞 � 1:
By Theorem 2.1 (Kunz [62, 1969]), if 𝑅 is a regular local ring of dimension 𝑑,

then
𝜑𝑅,𝔪 (𝑒) = 𝜑𝑅 (𝑒) = Φ𝑅 (𝑞) = 𝑞𝑑 . (2)

By Theorem 2.2(𝑏) (Monsky [72, 1983]), for an arbitrary Noetherian local ring
𝑅 and finitely generated 𝑅-module 𝑀 with respect to ideal 𝐼,

𝜑𝑀,𝐼 (𝑒) = Φ𝑀,𝐼 (𝑞) = 𝛼 𝑞𝑑 + O(𝑞𝑑−1). (3)

Huneke, McDermott and Monsky [59, 2003] refines (3) for an excellent normal
domain 𝑅 with perfect residue field to the following form which identifies the next
order term

𝜑𝑀,𝐼 (𝑒) = Φ𝑀,𝐼 (𝑞) = 𝛼 𝑞𝑑 + 𝛽 𝑞𝑑−1 + O(𝑞𝑑−2), (4)

where 𝛽 is called the second coefficient. It iswritten as 𝛽𝐼 (𝑀) ifwewish to emphasize
that 𝛽 is a function of 𝑀 with respect to 𝐼 or 𝛽(𝑀) if 𝐼 is the maximal ideal. The
normality condition on the ring was further relaxed by Kurano and the author [24],
and independently Hochster and Yao [55].
As noted in [59], the third coefficient in (4) in general does not exist. For example,

as computed by Han and Monsky [48], the domain 𝑅 = Z/5Z[𝑥1, 𝑥2, 𝑥3, 𝑥4]/(𝑥41 +
𝑥42 + 𝑥

4
3 + 𝑥

4
4) has 𝜑𝑅 (𝑒) = 168

61 (5
𝑛)3 − 107

61 (3
𝑛). The end term − 10761 (3

𝑛) is 𝑂 (5𝑛)
as expected in (4) but is not in the form of 𝑐(5𝑛) + 𝑂 (1) with some constant 𝑐.
In Subsect. 3.2, we will point out that the normality condition (R1)+(S2) can be
loosened to be (R1′), a condition similar to (R1). However, as seen in Examples 2.3
and 2.4, this new condition cannot be further relaxed.
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In the earlier studies of Hilbert-Kunz theory, the entire function was computed
in many cases. These include certain projective plane curves and hypersurfaces
by Kunz, Han, Monsky, Pardue, Buchweitz, and Chen [63, 48, 82, 30, 19, 73,
74, 75], Stanley-Reisner rings by Conca [30], and Cohen-Macaulay rings of finite
representation types by Seibert [94]. The outcome of these investigations shows that
Hilbert-Kunz functions are periodic in some cases but not always.
Despite this evidence, it is still interesting to ask how close the Hilbert-Kunz func-

tions are to the form of a polynomial in 𝑞, or the next best possibility, a quasipoly-
nomial in 𝑞. By a quasipolynomial, we mean a function in the form of a polynomial
whose coefficients are periodic functions. The functions obtained in Examples 2.3
and 2.4 are quasipolynomials. Some cases have been studied and computed, for
instance Conca [30], Seibert [93], Miller, Robinson and Swanson [70, 89], but a
systematic treatment is still lacking. This will be discussed in Sections 4 and 5 for
normal affine semigroup rings.
Beforemoving on to the next section for some established techniques applied in the

study of Hilbert-Kunz functions, we brieflymention somemore recent developments
related to Hilbert-Kunz theory.
In recent years, Hilbert-Kunz multiplicity has been generalized to be taken with

respect to ideals that are not primary to the maximal ideal. This is done by using
the length of the local cohomology at the maximal ideal. This notion, known as the
generalized Hilbert-Kunz multiplicity, was proved to exist and further developed by
Epstein and Yao [38], Hernández and Jeffries [50], and Dao and Smirnov [34]. It
should be noted that this is different from another generalized version for monomial
ideals, primary to a maximal ideal, considered by Conca, Miller, Robinson and
Swanson [30, 70, 89] (see Subsect. 3.6).
Apotential extension ofHilbert-Kunzmultiplicity to the characteristic zero setting

has been proposed. In this regard, limit Hilbert-Kunz multiplicity is considered.
When the limit exists, its uniformity is also of interest; see Application 3.5 for more
details and relevant references.
It is also known, from the work of Huneke and Leuschke [58], Singh [98],

Yao [119], and Aberbach [1], that the theory of 𝐹-signature is closely related to that
of Hilbert-Kunz multiplicity . In particular, it is proved by Tucker, Polstra, Caminata
and De Stefani [111, 83, 21] that 𝐹-signature functions have the same approximate
functional forms as Hilbert-Kunz functions. In the case of affine semigroup rings,
the work of Watanabe [113], Bruns [16], Singh [98], and Von Korff [112] show that
the same effective methods can be used to compute these two sets of functions and
multiplicities. We will present the techniques of [16] in Subsect. 3.5.

3 Techniques in Hilbert-Kunz Functions

In this section, we review some of the techniques that have been applied repeatedly
in investigating Hilbert-Kunz functions. In doing so, we wish to address the depth
of Hilbert-Kunz theory, and to make the technical proofs more accessible. The
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review here should be taken as complementary reading to the original proofs. Our
summaries are not meant to replace them.
To keep the paper self-contained, we will define the terms commonly used in this

paper to avoid confusion and ambiguity. However, for the definitions of those notions
that require separate background, we will refer to appropriate references so that the
discussions remain focused on the key ideas. In these cases, we provide a means of
processing them to help the readers move forward.
Unexplained notation and terminology can be looked up in the following ref-

erences: Cutkosky [33], Hartshorne [49] and Shafarevich [96, 97] for algebraic
geometry; Fulton [43] and Roberts [87] for intersection theory. For an algebraic ap-
proach to locally free sheaves as modules and Chern characters, we recommend Part
II, especially Chap. 9, of [87]. An affine semigroup ring can sometimes be viewed
as a subalgebra generated by finitely many monomials of a polynomial ring over a
field, but we highly recommend some basic knowledge in their connection to toric
varieties as presented in Cox, Little and Schenck [32]. Stanley [102] and Miller and
Sturmfels [69] are excellent sources for combinatorics theory.
Whenever possible, we adopt the notation from the original papers from which

we are presenting the techniques. There may be some overlapping notation. But we
believe the confusion is minimal as they appear in different contexts.
We begin by presenting two functors arising from the Frobenius map.
Let 𝑅 be a Noetherian local ring of positive characteristic 𝑝 with perfect residue

field. Recall that the Frobenius homomorphism is the map 𝑓 : 𝑅 → 𝑅, 𝑓 (𝑟) = 𝑟 𝑝 .
The Frobenius homomorphism induces two functors. One is the functor by restriction
of scalars:

𝑀 ↦→ 1𝑀

where 1𝑀 is the module over 𝑅 via 𝑓 . Precisely, for any 𝑚 ∈ 𝑀 , if (𝑚)1 denotes the
element𝑚 considered as an element in 1𝑀 , then 𝑟 · (𝑚)1 = (𝑟 𝑝𝑚)1 for any 𝑟 ∈ 𝑅. The
functor by the restriction of scalars 𝑀 ↦→ 1𝑀 is an exact functor (c.f. [87, Sect. 7.3]).
In what follows, we assume that 𝑅 has a perfect residue field and that 1𝑅 is a finitely
generated 𝑅-module, that is, 𝑅 is 𝐹-finite. Note that the ring 𝑅 is 𝐹-finite if 𝑅 is a
complete local ring with perfect residue field or a localization of a ring of finite type
over a perfect field. If 𝑅 is 𝐹-finite, the rank of 1𝑅 is 𝑝𝑑 if rank is defined (e.g. 𝑅 is a
domain). If 𝑅 is regular, then by Kunz’s theorem, 1𝑅 is flat so it is also free. For any
positive integer 𝑒, the module 𝑒𝑀 is obtained by the self-composition of the functor;
or equivalently, 𝑒𝑀 is the module over 𝑅 via the composite function 𝑓 𝑒 = 𝑓 ◦ · · · ◦ 𝑓 .
The other functor is the Frobenius functor F (also known as the Peskine-Szpiro

functor) from the category of left 𝑅-modules to itself via tensor product over 𝑓 ,

F(𝑀) := 1𝑅 ⊗𝑅 𝑀.

This is considered as an extension of scalars along 𝑓 . The resulting 𝑅-module
structure on F(𝑀) is via the left factor. More precisely, for any 𝑎, 𝑟 ∈ 𝑅 and 𝑚 ∈ 𝑀 ,
𝑎(𝑟 ⊗ 𝑚) = 𝑎𝑟 ⊗ 𝑚 and 1 ⊗ 𝑟𝑚 = 𝑟 𝑝 ⊗ 𝑚. As left 𝑅-modules, F(𝑅) � 𝑅. Therefore,

F(𝑅/𝐼) = 1𝑅 ⊗𝑅 𝑅/𝐼 = 𝑅/ 𝑓 (𝐼) = 𝑅/𝐼 [𝑝]
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with its ordinary left scalar multiplication. One can iterate this process and see that
F𝑒 (𝑅) = 𝑅 and F𝑒 (𝑅/𝐼) = 𝑅/𝐼 [𝑝𝑒 ] .

Remark 3.1 Due to commutativity, 1𝑅⊗𝑅𝑀 � 𝑀 ⊗𝑅 1𝑅, but the module structure of
𝑀⊗𝑅 1𝑅 is via the right factor. That is, for any 𝑎, 𝑟 ∈ 𝑅 and𝑚 ∈ 𝑀 , 𝑎(𝑚⊗𝑟) = 𝑚⊗𝑟𝑎
and 𝑚𝑟 ⊗ 1 = 𝑚 ⊗ 𝑟 𝑝 .

The Peskine-Szipiro functor is covariant, additive, and right exact from the cat-
egory of left 𝑅-modules to itself. When F is applied to a complex of free modules
of finite ranks, all free modules remain the same up to isomorphism since tensor
product commutes with direct sum, but the entries of the matrices of the boundary
maps are raised to the 𝑝-th power. A notable theorem by Peskine and Szpiro states
that if G• is a finite complex of finitely generated free 𝑅-modules, then G• is acyclic
if and only if F(G•) is acyclic (c.f. [18, Theorem 8.7]).
Next we present an analogous Hilbert function for Frobenius powers. Its form is

proved by induction on dimension similarly to the case of usual Hilbert functions,
but the induction steps are more complicated (c.f. Seibert [93] and Roberts [87]).
Let C be a category of finitely generated 𝑅-modules of dimension no bigger than a
nonnegative integer 𝑛.We say thatC satisfies the property (†) if whenever𝑀 ′, 𝑀, 𝑀 ′′

in C form a short exact sequence 0 → 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0, then 𝑀 is in C if
and only if 𝑀 ′ and 𝑀 ′′ are in C. The property (†) implies that 𝑀 ∈ C if and only if
𝑅/𝔭 ∈ C for all prime ideals in the support of 𝑀 . Since 𝑀 and 1𝑀 have the same
support, it follows that if 𝑀 ∈ C, then 1𝑀 ∈ C.

Theorem 3.2 ([93] [87, Theorems 7.3.2 & 7.3.3]) Let C be a category of finitely
generated 𝑅-modules of dimension no bigger than a nonnegative integer 𝑛. Assume
that C satisfies the property (†). Let 𝑔 be a function from C to Z.

(𝑎) If 𝑔 is additive on short exact sequences, then for any 𝑀 ∈ C, there exists a
polynomial in 𝑝𝑒 with rational coefficients 𝑎0, . . . , 𝑎𝑛 such that

𝑔(𝑒𝑀) = 𝑎𝑛 (𝑝𝑒)𝑛 + 𝑎𝑛−1 (𝑝𝑒)𝑛−1 + · · · + 𝑎0

for all integer 𝑒 ≥ 0.
(𝑏) If 𝑔(𝑀) ≤ 𝑔(𝑀 ′) + 𝑔(𝑀 ′′) whenever 0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 is exact in

C, then there exists a real number 𝑐(𝑀) such that

𝑔(𝑒𝑀) = 𝑐(𝑀) (𝑝𝑒)𝑛 +𝑂 ((𝑝𝑒)𝑛−1)

for all integers 𝑒 ≥ 0.

In Seibert [93] and Roberts [87, Sect. 7.3], one can find interesting applications
of Theorem 3.2 to the existence of Hilbert-Kunz multiplicity originally proved by
Monsky [72] and the asymptotic Euler characteristic 𝜒∞ defined by Dutta [35]. The
latter is now known as Dutta multiplicity.
Now we provide some elementary observations based on Theorem 3.2(𝑎). Let

𝐼 be an 𝔪-primary ideal with a finite free resolution. Then 𝑅/𝐼 has a finite free
resolution G•, i.e., G• → 𝑅/𝐼 → 0 is exact. Now let C be the category of finitely



The Shape Of Hilbert-Kunz Functions 11

generated 𝑅-modules. The Euler characteristic 𝜒G• of a module 𝑀 ∈ C is defined
to be the following alternating sum of lengths of the homology modules

𝜒G• (𝑀) :=
∑︁
𝑖

(−1)𝑖ℓ(𝐻𝑖 (G• ⊗𝑅 𝑀).

The Euler characteristic is additive on short exact sequences. Since restriction of
scalars along 𝑓 is exact, therefore, by Theorem 3.2(𝑎), 𝜒G• (𝑒𝑀)) is a polynomial in
𝑝𝑒 with rational coefficients.
We observe that

G• ⊗𝑅 𝑒𝑀 � G• ⊗𝑅 𝑒(𝑅 ⊗𝑅 𝑀) � (G• ⊗𝑅 𝑒𝑅) ⊗𝑅 𝑀 � F𝑒 (G•) ⊗𝑅 𝑀.

The last equality holds for G• ⊗𝑅 𝑒𝑅 � 𝑒𝑅 ⊗𝑅 G• = F𝑒 (G•) by Remark 3.1. Upon
taking 𝑀 = 𝑅, we have that

𝜒G• (𝑒𝑅) =
∑
𝑖 (−1)𝑖ℓ(𝐻𝑖 (F𝑒 (G•)))

= ℓ(𝐻0 (F𝑒 (G•)))
= ℓ(𝑅/𝐼 [𝑝𝑛 ]) = 𝜑𝑅,𝐼 (𝑒).

(5)

In the display above, the second equality holds since F preserves acyclicity of finite
free complexes due to the result of Peskine and Szpiro mentioned above. Hence the
higher homology modules all vanish. The third equality is due to the fact that F is
right exact so 𝐻0 (F𝑒 (G•) = F𝑒 (𝑅/𝐼). Applying Theorem 3.2(𝑎) to 𝜒G• in (5), we
obtain the following corollary for the Hilbert-Kunz function.

Corollary 3.3 Let (𝑅,𝔪) be a local ring of characteristic 𝑝 with perfect residue
field and 𝐼 an 𝔪-primary ideal. Assume that 𝐼 has finite projective dimension. Then
𝜑𝑅,𝐼 (𝑒) is a polynomial in 𝑝𝑒 with rational coefficients.

For 𝜑𝑀,𝐼 (𝑒), if𝑀 is a finitely generated flat 𝑅-module, then by a parallel argument
as in (5), we have 𝜒G• (𝑒𝑀) = 𝜑𝑀,𝐼 (𝑒). But a finitely generated flat module over a
local ring is free. So 𝜑𝑀,𝐼 (𝑒) is just a multiple of 𝜑𝑅,𝐼 (𝑒).
Corollary 3.3 imposes a strong condition: 𝐼 has finite projective dimension. Com-

monly interesting ideals in any given ring 𝑅 do not necessarily have finite projective
dimension unless 𝑅 is regular. If 𝑅 is regular, then by Corollary 3.3, we have
𝜑𝑅,𝐼 (𝑒) = 𝜒G• (F𝑒 (𝑅)) = 𝑎𝑑 (𝑝𝑒)𝑑 +𝑎𝑑−1 (𝑝𝑒)𝑑−1 + · · · + 𝑎0 for any𝔪-primary ideal
𝐼. As with classical Hilbert polynomials, an immediate challenge is how one can
identify the coefficients. Suppose we can use anything at our disposal, then we can
jump directly to Theorem 3.10 which shows that each coefficient 𝑎𝑖 is determined by
a certain class in the Chow group 𝐴𝑖 (𝑅). But the Chow group of a regular ring has
only the top piece, namely 𝐴𝑖 (𝑅) = 0 for 𝑖 = 𝑑−1, . . . , 0. Hence 𝜑𝑅,𝐼 (𝑒) = 𝑎𝑑 (𝑝𝑒)𝑑
and indeed 𝑎𝑑 = ℓ(𝑅/𝐼) by [65, Theorem 6.4], recovering Kunz’s original theorem
when 𝐼 = 𝔪. This is a long detour back to where we started. We note that even if
Hilbert-Kunz function is eventually a polynomial in 𝑝𝑒, determining the values of
the coefficients is a very difficult task.
In general for an arbitrary finitely generated module 𝑀 , the higher homology

modules in
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𝜒G• (𝑒𝑀) =
∑︁
𝑖

(−1)𝑖ℓ(𝐻𝑖 (F𝑒 (G•)) ⊗𝑅 𝑀) (6)

do not always vanish. In such a case, one has to study and control the higher homology
modules in order to properly describe the desired length of the zeroth homology that
equals 𝜑𝑀,𝐼 (𝑒). Subsections 3.2 and 3.3 will demonstrate how this can be done in
their respective cases.
For an estimate of the length of higher homology modules in a latter discussion,

we quote a theorem from [59], which can be traced back to [86, 54, 93] and later
strengthened by [28]. Let 𝑑 = dim𝑀 . It states that ifG• : 0→ 𝐺𝑛 → · · · → 𝐺0 → 0
is a finite complex of free modules such that each homology module 𝐻𝑖 (G•) has
finite length, then for 𝑒 ≥ 0,

ℓ(𝐻𝑛−𝑡 (F𝑒 (G•) ⊗𝑅 𝑀)) = 𝑂 ((𝑝𝑒)𝑚𝑖𝑛(𝑑,𝑡) ). (7)

Inwhat follows, wewill explore how each path leads us to approximate or compute
Hilbert-Kunz functions.

3.1 Via Representation Rings and 𝒑-Fractals

In this subsection, we describe representation rings and their connections to Hilbert-
Kunz theory. Then we briefly describe the next set of activity that it led to, namely
the highly technical theory of 𝑝-fractals. At the end we mention a conjecture about
the behavior of Hilbert-Kunz multiplicity when the characteristic 𝑝 increases.
Pioneered by Example 4.3 in Kunz [63] and Monsky’s initial paper [72], a series

of studies on theHilbert-Kunz function of hypersurfaces followed in the 1990s. These
include works by Buchweitz, Chang, Chen, Han, Monsky and Pardue [48, 82, 19, 73,
74, 75] and for Cohen-Macaulay rings of finite representation type by Seibert [94].
Especially remarkable is the paper “Some surprisingHilbert-Kunz functions” byHan
and Monsky [48]. It introduced the idea of using representation rings in the setting
of the affine coordinate rings of the diagonal hypersurfaces, 𝜅 [𝑥1, . . . , 𝑥𝑠]/(

∑
𝑖 𝑥
𝑑𝑖
𝑖
),

which became the first systematic method for computing Hilbert-Kunz functions. It
also identified these rings as the first known family whose Hilbert-Kunz functions
are eventually periodic. For the detailed structure of this special representation ring,
we refer to [47, 48, 103] but we describe the basics here. Out of this grew the method
of 𝑝-fractals of Monsky and Teixeira for handling other hypersurfaces, which we
mention subsequently; for further details see [80, 103].

Representation Rings. Here we describe the relevant representation rings and
how they apply to computing Hilbert-Kunz functions. Let 𝜅 [𝑇] be a polynomial
ring in one variable and 𝒞 the category of finitely generated modules over 𝜅 [𝑇]
annihilated by a power of 𝑇 . Then 𝒞 satisfies the property (†) defined previously,
namely, for any short exact sequence

0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0,
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𝑀 is in 𝒞 if and only if 𝑀 ′ and 𝑀 ′′ are in 𝒞. We further define the Grothendieck
group 𝐾0 (𝒞) of 𝒞 as the free abelian group generated by the isomorphism classes
[𝑀] of objects 𝑀 in C modulo the subgroup generated by [𝑀] − [𝑀 ′] − [𝑀 ′′] for
any 𝑀, 𝑀 ′, 𝑀 ′′ satisfying the above short exact sequence.
Let [𝑀] and [𝑁] represent two classes in 𝐾0 (𝒞). Consider the tensor product of

𝑀 and𝑁 over 𝜅.We define an action of𝑇 on𝑀⊗𝜅𝑁 by𝑇 (𝑚⊗𝑛) = 𝑇 (𝑚)⊗𝑛+𝑚⊗𝑇 (𝑛)
for any 𝑚 ∈ 𝑀 and 𝑛 ∈ 𝑁 . Thus 𝑀 ⊗𝜅 𝑁 is in 𝒞. It can be verified that 𝐾0 (𝒞) is a
commutative ring with the binary operations + and · induced by ⊕ and ⊗ respectively,
and that the classes of the zero module and 𝜅 [𝑇]/(𝑇) are the respective additive and
multiplicative identities ([48, Theorem 1.5]). The Grothendieck group 𝐾0 (𝒞) with
this commutative ring structure is called the representation ring in [48], where it is
denoted by Γ.
Since every module 𝑀 in𝒞 is finitely generated and annihilated by a power of 𝑇 ,

by the structure theorem for modules over a P.I.D., 𝑀 can be decomposed uniquely
up to isomorphism into a finite direct sum as 𝑀 � ⊕ 𝑗𝜅 [𝑇]/(𝑇𝑛 𝑗 ). Let 𝛿 𝑗 denote
the class represented by 𝜅 [𝑇]/(𝑇 𝑗 ) in Γ. Then {𝛿 𝑗 }∞𝑗=1 forms a basis for Γ as an
abelian group. Moreover, one can define a map 𝛼 : Γ → Z that takes [𝑀] to the
number of indecomposable summands in the unique decomposition just mentioned.
The definition of 𝛼 here is equivalent to that in [48] where for technical reasons 𝛼 is
defined via a different basis 𝜆 𝑗 = (−1) 𝑗 (𝛿 𝑗+1 − 𝛿 𝑗 ).
We observe that if 𝑉 = 𝜅 [𝑇]/(𝑇 𝑗 ), then dim𝜅 (𝑉/𝑇𝑉) = 1. Since 𝑀 �

⊕ 𝑗𝜅 [𝑇]/(𝑇𝑛 𝑗 ) is a unique decomposition, and 𝛼( [𝑀]) equals the minimal num-
ber of generators of 𝑀 as a 𝜅 [𝑇]-module, we have 𝛼( [𝑀]) = dim𝜅 (𝑀/𝑇𝑀).
Now we may present the connection between the representation ring and the

Hilbert-Kunz function of a diagonal hypersurface, i.e., a ring of the form

𝑅 = 𝜅 [𝑥1, . . . , 𝑥𝑠]/(𝑥𝑑11 + · · · + 𝑥𝑑𝑠𝑠 ).

Without loss of generality, we assume 𝑑𝑖 > 0. First we take 𝑞 as an integer larger
than all the 𝑑𝑖’s and view 𝑀𝑖 = 𝑘 [𝑥𝑖]/(𝑥𝑞𝑖 ) as a 𝜅 [𝑇]-module with 𝑇 acting as
multiplication by 𝑥𝑑𝑖

𝑖
. As a 𝜅-vector space,

𝑀𝑖 = 𝜅 · 1 + 𝜅 · 𝑥𝑖 + 𝜅 · 𝑥2𝑖 + · · · + 𝜅𝑥𝑑𝑖−1
𝑖

+ 𝜅 · 𝑥𝑑𝑖
𝑖

+ 𝜅 · 𝑥𝑑𝑖+1
𝑖

+ · · · + 𝜅 · 𝑥𝑞−1
𝑖

.

Then, there are invariant 𝜅 [𝑇]-submodules generated by 1, 𝑥𝑖 , 𝑥2𝑖 , . . . , 𝑥
𝑑𝑖−1
𝑖

respec-
tively. Write 𝑞 = 𝑘𝑖𝑑𝑖 + 𝑎𝑖 with 0 ≤ 𝑎𝑖 < 𝑑𝑖 . The invariant submodule generated by
𝑥𝑐
𝑖
, with 𝑐 = 0, . . . , 𝑎𝑖 − 1 are annihilated by 𝑇 𝑘𝑖+1 but no smaller power. This is true

because 𝑇 𝑘𝑖 · 𝑥𝑐
𝑖
= 𝑥

𝑘𝑖𝑑𝑖
𝑖

· 𝑥𝑐
𝑖
≠ 0 in 𝑀𝑖 if 𝑐 < 𝑎𝑖 , but 𝑇 𝑘𝑖+1 · 𝑥𝑐𝑖 = 𝑥

𝑘𝑖𝑑𝑖+𝑎𝑖+(𝑑𝑖−𝑎𝑖)+𝑐
𝑖

=

𝑥
𝑞

𝑖
· 𝑥𝑑−𝑎𝑖+𝑐
𝑖

= 0 in 𝑀𝑖 and 0 < 𝑑𝑖 − 𝑎𝑖 ≤ 𝑑𝑖 − 𝑎𝑖 + 𝑐 ≤ 𝑑𝑖 − 1 if 0 ≤ 𝑐 ≤ 𝑎𝑖 − 1. Sim-
ilarly, the invariant submodules generated by 𝑥𝑐

𝑖
, 𝑐 = 𝑎𝑖 , . . . , 𝑑𝑖 − 1, are annihilated

by 𝑇 𝑘𝑖 but no smaller power. Hence as a 𝜅 [𝑇]-module, 𝑀𝑖 can be decomposed into

𝑀𝑖 �
(
𝜅 [𝑇]/(𝑇 𝑘𝑖+1)

)𝑎𝑖
⊕

(
𝜅 [𝑇]/(𝑇 𝑘𝑖 )

)𝑑𝑖−𝑎𝑖
.
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Hence we can conclude that [𝑀𝑖] = 𝑎𝑖𝛿𝑘𝑖+1 + (𝑑𝑖 − 𝑎𝑖)𝛿𝑘𝑖 in Γ.
Next we assume that 𝜅 is a field of positive characteristic 𝑝 and recall that 𝑞 = 𝑝𝑒.

Observe that

𝑀1 ⊗𝜅 · · · ⊗𝜅 𝑀𝑠 � 𝑘 [𝑥1, · · · , 𝑥𝑠]/(𝑥𝑞1 , . . . , 𝑥
𝑞
𝑠 ) = 𝑘 [𝑥1, · · · , 𝑥𝑠]/𝔪 [𝑞 ] ,

where 𝔪 is the ideal (𝑥1, . . . , 𝑥𝑠). By the definition of the action 𝑇 on each 𝑀𝑖 and
the multiplication structure in Γ, 𝑀1 ⊗𝜅 · · · ⊗𝜅 𝑀𝑠 is a 𝜅 [𝑇]-module where 𝑇 acts by
multiplication by 𝑥𝑑11 + · · · + 𝑥𝑑𝑠𝑠 . On the other hand, if we let 𝑀 denote 𝑀1 ⊗𝜅 · · · ⊗𝜅
𝑀𝑠 , then 𝑀/𝑇𝑀 is obviously a module over 𝑅 = 𝑘 [𝑥1, · · · , 𝑥𝑠]/(𝑥𝑑11 + · · · + 𝑥𝑑𝑠𝑠 ).
Moreover, as 𝑅-modules,

𝑀/𝑇𝑀 � 𝑘 [𝑥1, · · · , 𝑥𝑠]/(𝑥𝑞1 , . . . , 𝑥
𝑞
𝑠 , 𝑥

𝑑
1 + · · · + 𝑥𝑑𝑠𝑠 ) � 𝑅/𝔪 [𝑞 ] ,

and ℓ𝑅 (𝑅/𝔪 [𝑞 ]) = dim𝜅 (𝑀/𝑇𝑀). As noted earlier, 𝛼( [𝑀]) = dim𝜅 (𝑀/𝑇𝑀).
Hence the Hilbert-Kunz function can be obtained via 𝛼 as

ℓ𝑅 (𝑅/𝔪 [𝑞 ]) = dim𝜅 (𝑀/𝑇𝑀) = 𝛼( [𝑀]) = 𝛼( [𝑀1 ⊗𝜅 · · · ⊗𝜅 𝑀𝑠])
= 𝛼( [𝑀1] · · · [𝑀𝑠])
= 𝛼

(∏𝑑
𝑖=1 (𝑎𝑖𝛿𝑘𝑖+1 + (𝑑𝑖 − 𝑎𝑖)𝛿𝑘𝑖 )

)
.

(8)

Han and Monsky developed an intricate combinatorial method of computing the
indecomposable summands in the decomposition of tensor products of basis elements
(i.e., products of 𝛿 𝑗 ’s) in Γ to calculate the value of 𝛼 in the last equality in (8). This
yields a method for computing Hilbert-Kunz functions. Using this, they also proved
that the Hilbert-Kunz function of the rings in this family is eventually periodic and
that the multiplicity is a rational number [48, Theorem 5.7].
We note that the eventually periodic functions of the family in this subsection are

not in the form of quasipolynomials as will be discussed in Sect. 4. This can be seen
from the following examples in [48].

Example 3.4 (Han-Monsky [48, p. 135])
(1) 𝑅 = 𝜅 [𝑥1, 𝑥2, 𝑥3, 𝑥4]/(

∑
𝑖 𝑥
4
𝑖
) where 𝜅 = Z/5Z, then 𝜑𝑅 (=) 16861 · 53𝑒 − 107

61 · 3𝑒.
(2) 𝑅 = 𝜅 [𝑥1, . . . , 𝑥5]/(

∑
𝑖 𝑥
4
𝑖
) where 𝜅 = Z/3Z, then 𝜑𝑅 (=) 2319 · 3

4𝑒 − 4
19 · 5

𝑒.

Using the technique developed by Han and Monsky [48], Chiang and Hung [29]
extended the result fromdiagonal hypersurfaces to rings of the form 𝜅 [𝑥1, . . . , 𝑥𝑠]/(𝑔)
where 𝑔 =

∑𝑚
𝑖=1 (X𝑖)𝑑𝑖 and X𝑖 is a product of elements of a subset of {𝑥1, . . . , 𝑥𝑠}

such that at least one X𝑖 is a single variable.
p-Fractals. Building on the theory of representation rings, Monsky and Teix-

eira [80, 81, 103] develop the theory of 𝑝-fractals which takes them beyond diagonal
hypersurfaces. The theory of 𝑝-fractals provides a means to understand and allows
the computations of Hilbert-Kunz series in may situations. Here we give a brief
overview of the results, but do not delve into this method due to its technical com-
plexity.
First, recall that Hilbert-Kunz series is the generating function of Hilbert-Kunz

function
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HKS𝑅 (𝑡) =
∑︁
𝑒

𝜑𝑅 (𝑒) · 𝑡𝑒 .

Seibert [94] first proves that if 𝑅 is Cohen-Macaulay of finite Cohen-Macaulay type,
and 𝑅 is 𝐹-finite (a finitely generated module via the Frobenius morphism), then
HKS𝑅 (𝑡) is rational, i.e., a quotient of two polynomials, and that 𝑒𝐻𝐾 (𝑅) is a rational
number. Hilbert-Kunz series has also been studied in [76, 103, 81].
The combined techniques of representation rings and 𝑝-fractals enable Monsky

and Teixeira to prove the rationality of Hilbert-Kunz series for a large family of rings
of the formof a quotient of a power series ring by a principal ideal: 𝜅 [[𝑥1, . . . , 𝑥𝑠]]/(𝑔)
for a finite field |𝜅 | and certain power series 𝑔 [81, Theorem 4.4]. Using this, in some
examples, the Hilbert-Kunz multiplicities can be calculated and appear to be rational
numbers [81, Section 5]. Furthermore, the Hilbert-Kunz functions are eventually
periodic for the case 𝑠 = 3, 𝑔 = 𝑥𝐷3 − ℎ(𝑥1, 𝑥2) and ℎ a nonzero element in the
maximal ideal of 𝜅 [[𝑥1, 𝑥2]] [76, Theorem 6.11]. (See also the ending comment in
[81, p. 255] regarding the finiteness condition on the field 𝜅 and the vanishing of the
(𝑝𝑒)-term of the Hilbert-Kunz function. We will address these interesting points in
Subsect. 3.3 after the proof of Theorem 3.8 and in Subsect. 3.4, respectively.) In [76,
Theorem, p. 351], Monsky gives a concrete description of the Hilbert-Kunz function
for the case 𝑔 = 𝑥𝐷3 − 𝑥1𝑥2 (𝑥1 + 𝑥2) (𝑥1 + 𝜆𝑥2), for 𝜆 ≠ 0 in 𝜅, and 𝑝 ≡ ±1 (mod 𝐷).
Nextwe present an attempt to defineHilbert-Kunzmultiplicity in the characteristic

zero case and report some concrete progress based on Han-Monsky’s technique of
representation rings.

Application 3.5 The notion of limit Hilbert-Kunz multiplicity arises by reducing a
ring of characteristic zero modulo primes 𝑝. Precisely, if 𝑅 is a Z-algebra essentially
of finite type over Z and 𝐼 is an ideal, let 𝑅𝑝 be a reduction of 𝑅 mod 𝑝 and 𝐼𝑝
the extended ideal. If ℓ(𝑅𝑝/𝐼𝑝) is finite and nonzero for almost all 𝑝, then one can
define

𝑒∞𝐻𝐾 (𝐼, 𝑅) := lim𝑝→∞
𝑒𝐻𝐾 (𝐼𝑝 , 𝑅𝑝)

if this limit exists. The above is called the limit Hilbert-Kunz multiplicity of 𝐼.
The existence of the limit is not known except in a few cases. These include when
𝑒𝐻𝐾 (𝐼𝑝 , 𝑅𝑝) is constant for almost all 𝑝 as in [10, 19, 30, 39, 73, 82, 113, 115], and
when non-constant, for homogeneous coordinate rings of smooth projective curves
by Trivedi [105] and for diagonal hypersurfaces by Gessel and Monsky in [44]. The
example below illustrates the last case.
Based on Han andMonsky’s scheme, Chang [27] computes precisely the Hilbert-

Kunz function of the ring 𝑅 = 𝜅 [𝑥1, 𝑥2, 𝑥3, 𝑥4]/(𝑥41 + 𝑥
4
2 + 𝑥

4
3 + 𝑥

4
4) with respect to

the maximal ideal (𝑥1, . . . , 𝑥4) for 𝜅 = Z/𝑝Z. The Hilbert-Kunz multiplicity in this
case is also calculated in Gessel and Monsky [44] to be

𝑒𝐻𝐾 (𝑅) =
8
3

(
2𝑝2 + 2𝑝 + 3
2𝑝2 + 2𝑝 + 1

)
, 𝑝 ≡ 1 (mod 4); and 8

3

(
2𝑝2 − 2𝑝 + 3
2𝑝2 − 2𝑝 + 1

)
, 𝑝 ≡ 3 (mod 4)

In this example, 𝑒𝐻𝐾 (𝑅) obviously depends on the characteristic 𝑝 and yet one has
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𝑒∞𝐻𝐾 (𝔪, 𝑅) = lim𝑝→∞
8
3

(
2𝑝2 ± 2𝑝 + 3
2𝑝2 ± 2𝑝 + 1

)
=
8
3

which is independent of 𝑝.
Assuming that 𝑒∞

𝐻𝐾
(𝐼, 𝑅) exists, one can also ask for any fixed 𝑒 ≥ 1 if the

following equality holds,

𝑒∞𝐻𝐾 (𝐼, 𝑅) = lim𝑝→∞

ℓ(𝑅𝑝/𝐼 [𝑝
𝑒 ]

𝑝 )
(𝑝𝑒)𝑑

. (9)

Brenner, Li and Miller [15] provide an affirmative answer for the case of homo-
geneous coordinate rings of smooth projective curves. Their proof is based on the
formula of the Hilbert-Kunz multiplicity provided by the Harder-Narasimhan filtra-
tions as described in Subsect. 3.3 and the approach in [105] which handles the case
of larger values of 𝑒. Then building on the proof of [44], it is proved in [15] that the
above question has affirmative answer for coordinate rings of diagonal hypersurfaces.
More recent developments can be found in [107, 71, 109, 99, 110, 84].

3.2 Via The Divisor Class Group

Assume that (𝑅,𝔪) is an excellent normal local domain of dim 𝑅 = 𝑑 with a perfect
residue field. Here we sketch themain ideas of Huneke,McDermott andMonsky [59]
in proving that the Hilbert-Kunz function of 𝑀 with respect to an 𝔪-primary ideal
𝐼 has the following form as in (4)

𝜑𝑀,𝐼 (𝑒) = 𝛼 (𝑝𝑒)𝑑 + 𝛽 (𝑝𝑒)𝑑−1 + O((𝑝𝑒)𝑑−2). (10)

We remark that in general the 𝑑 in (10) can be replaced by dim𝑀 as noted in
the statement after Theorem 2.2. For the purpose of discussions in this subsection,
we fix 𝑑 to be dim 𝑅. Thus the 𝛼 in (10) is zero for those 𝑀 with dim𝑀 < 𝑑. And
similarly, 𝛽 = 0 if dim𝑀 < 𝑑 − 1.
Below we state two key lemmas. Lemma 3.6 is from [59] and is a consequence

of (7) that estimates the length of higher homology modules mentioned after Corol-
lary 3.3. Lemma 3.7 is implicit in [59] and is a crucial fact regarding the convergence
rate of a sequence.

Lemma 3.6 ([59, Lemma 1.1]) Let 𝑅 be a local ring of positive characteristic 𝑝
and 𝐼 and 𝔪-primary ideal of 𝑅. If 𝑇 is a finitely generated torsion 𝑅-module with
dim𝑇 = 𝑢, then ℓ(Tor𝑅1 (𝑅/𝐼 [𝑝

𝑒 ] , 𝑇)) = 𝑂 ((𝑝𝑒)𝑢).

Lemma 3.7 Let 𝑠 > 𝑡 be fixed positive integers. Let {𝜂𝑒}∞𝑒=1 be a sequence of real
numbers that satisfies a recurrent relation 𝜂𝑒+1 = 𝑝𝑠𝜂𝑒 +𝑂 ((𝑝𝑒)𝑡 ) for 𝑒 � 1. Then
there exists a real number 𝑎 such that 𝜂𝑒 = 𝑎 · (𝑝𝑒)𝑠 +𝑂 ((𝑝𝑒)𝑡 ) for 𝑒 � 1.
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Proof Set 𝜌𝑒 = 𝜂𝑒
(𝑝𝑒)𝑠 . Then by straightforward computation, one sees 𝜌𝑒+1 = 𝜌𝑒 +

𝑂 (( 1
𝑝𝑒
)𝑠−𝑡 ) which means |𝜌𝑒+1 − 𝜌𝑒 | ≤ 𝐶 · ( 1

𝑝𝑒
)𝑠−𝑡 for some constant 𝐶 and 𝑒 � 0.

Let 𝑚 > 𝑛 be integers. Then

|𝜌𝑚 − 𝜌𝑛 | ≤ |𝜌𝑚 − 𝜌𝑚−1 | + · · · + |𝜌𝑛+2 − 𝜌𝑛+1 | + |𝜌𝑛+1 − 𝜌𝑛 |.
≤ 𝐶 [( 1

𝑝𝑚−1 )𝑠−𝑡 + · · · + ( 1
𝑝𝑛+1

)𝑠−𝑡 + ( 1
𝑝𝑛
)𝑠−𝑡 ]

= 𝐶 · ( 1
𝑝𝑠−𝑡 )

𝑛 [1 + ( 1
𝑝𝑠−𝑡 ) + · · · + ( 1

𝑝𝑠−𝑡 )
𝑚−𝑛−1]

= 𝐶
𝑝𝑠−𝑡

𝑝𝑠−𝑡−1 [(
1
𝑝𝑠−𝑡 )

𝑛 − ( 1
𝑝𝑠−𝑡 )

𝑚]

which can be made as small as possible for large enough 𝑚, 𝑛. Hence {𝜌𝑒} is a
Cauchy sequence and thus it converges to some real number 𝑎. Furthermore, if we
fix 𝑛 = 𝑒 � 1, then

lim
𝑚→∞

|𝜌𝑚 − 𝜌𝑒 | ≤ lim
𝑚→∞

𝐶
𝑝𝑠−𝑡

𝑝𝑠−𝑡 − 1 [(
1
𝑝𝑠−𝑡

)𝑒 − ( 1
𝑝𝑠−𝑡

)𝑚] = 𝐶 𝑝𝑠−𝑡

𝑝𝑠−𝑡 − 1 (
1
𝑝𝑠−𝑡

)𝑒 .

Note that lim
𝑚→∞

|𝜌𝑚 − 𝜌𝑒 | = |𝑎 − 𝜌𝑒 |. Hence |𝑎 − 𝜌𝑒 | ≤ 𝑂 (( 1
𝑝𝑠−𝑡 )

𝑒) which implies
𝜂𝑒 = 𝑎(𝑝𝑒)𝑠 +𝑂 ((𝑝𝑒)𝑡 ) as desired. �

The work in [59] shows that the value of the second coefficient 𝛽 is intimately
related to the divisor class of the module, denoted by 𝑐(·). The proof of (10) goes
through the following three main steps. Step 1 deals with torsion free modules and
compares them with free modules of the same rank. Step 2 applies the outcome of
Step 1 to 1𝑅 to obtain 𝜑𝑅,𝐼 (𝑒). Step 3 reduces arbitrary modules to torsion free ones
and then applies Steps 1, 2 and Lemma 3.6 to obtain 𝜑𝑀,𝐼 (𝑒) for arbitrary 𝑀 .

Step 1. We focus on torsion free modules and prove that if 𝑀 has rank 𝑟 , then
there exists a real constant 𝜏(𝑀) such that 𝜑𝑀,𝐼 (𝑒) = 𝑟 𝜑𝑅,𝐼 (𝑒) + 𝜏(𝑀) (𝑝𝑒)𝑑−1 +
O((𝑝𝑒)𝑑−2). That is, up to O((𝑝𝑒)𝑑−2), the Hilbert-Kunz function of 𝑀 differs from
that of a freemodule of the same rank by a constantmultiple of (𝑝𝑒)𝑑−1 for 𝑒 � 1.We
give a brief outline of the proof for this statement. For a nonzero ideal 𝐽 (equivalently
torsion free module of rank one), if its divisor class 𝑐(𝐽) = 0, then 𝑅/𝐽 is torsion and
dim(𝑅/𝐽) ≤ 𝑑 − 2. The short exact sequence 0→ 𝐽 → 𝑅 → 𝑅/𝐽 → 0 implies that
𝜑𝐽 ,𝐼 (𝑒) = 𝜑𝑅,𝐼 (𝑒) −𝜑𝑅/𝐽 ,𝐼 (𝑒) + ℓ(Tor𝑅1 (𝑅/𝐼 [𝑝

𝑒 ] , 𝑅/𝐽)). So using [72, Lemma 1.2]
and Lemma 3.6 above, one can prove that 𝜑𝐽 ,𝐼 (𝑒) = 𝜑𝑅,𝐼 (𝑒) + 𝑂 ((𝑝𝑒)𝑑−2) ([59,
Lemma 1.2]). A similar result for a torsion free module 𝑀 of rank 𝑟 with 𝑐(𝑀) = 0
can be achieved, namely 𝜑𝑀,𝐼 (𝑒) = 𝑟𝜑𝑀,𝐼 (𝑒) + 𝑂 ((𝑝𝑒)𝑑−2) ([59, Theorem 1.4]).
Next, if 𝑀 and 𝑁 are torsion free and 𝑐(𝑀) = 𝑐(𝑁), then their Hilbert-Kunz
functions are equal up to 𝑂 ((𝑝𝑒)𝑑−2) and also ℓ(Tor1 (𝑅/𝐼 [𝑝

𝑒 ] , 𝑀) = 𝑂 ((𝑝𝑒)𝑑−2)
[59, Lemma 1.5]. (This latter statement will be needed in Step 3.) We note that since
two modules are often fit into the same short exact sequence in order to compare
their Hilbert-Kunz functions (as just done for 𝐽 and 𝑅 in the above), bounding the
length of the Tor-functor within a desired range becomes crucial for the success of
the argument. Finally for an arbitrary torsion free module of rank 𝑟 , one considers
𝛿𝑒 = 𝜑𝑀,𝐼 (𝑒) − 𝑟𝜑𝑅,𝐼 (𝑒) and proves that this difference satisfies a recurrence
relation: 𝛿𝑒+1 = (𝑝𝑒)𝑑−1𝛿𝑒 + 𝑂 ((𝑝𝑒)𝑑−2) [59, Theorem 1.8]. Thus by Lemma 3.7,
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there exists a real number, denoted by 𝜏(𝑀), such that

𝛿𝑒 = 𝜏(𝑀) (𝑝𝑒)𝑑−1 +𝑂 ((𝑝𝑒)𝑑−2).

By the definition of 𝛿𝑒, we have

𝜑𝑀,𝐼 (𝑒) = 𝑟 𝜑𝑅,𝐼 (𝑒) + 𝜏(𝑀) (𝑝𝑒)𝑑−1 +𝑂 ((𝑝𝑒)𝑑−2)

where the number 𝜏(𝑀) depends only on the class of 𝑀 and is additive. In fact
𝑀 → 𝜏(𝑀) gives a well-defined map on the divisor class group of 𝑅 to R. In
particular, 𝜏(𝑀) = 0 if 𝑐(𝑀) = 0 (c.f. [59, Theorem 1.9] [24, Theorem 4.1]).

Step 2. In this step, we prove 𝜑𝑅,𝐼 (𝑒) has the desired form (10) by taking 𝑀 = 1𝑅

and repeating a similar approximation as in Step 1. In fact, 1𝑅 is a finitely generated
𝑅-module by the hypothesis of 𝑅. Notice that

𝜑1𝑅,𝐼 (𝑒) = ℓ𝑅 (1𝑅/𝐼 [𝑝
𝑒 ]1𝑅) = ℓ𝑅 (𝑅/𝐼 [𝑝

𝑒+1 ]) = 𝜑𝑅,𝐼 (𝑒 + 1).

On the other hand, since 𝑅 is a domain and 𝑅 is 𝐹-finite, 1𝑅 is a torsion free 𝑅-module
of rank 𝑝𝑑 . Thus by Step 1, we have

𝜑𝑅,𝐼 (𝑒 + 1) = 𝜑1𝑅,𝐼 (𝑒) = 𝑝𝑑𝜑𝑅,𝐼 (𝑒) + 𝜏(1𝑅) (𝑝𝑒)𝑑−1 +𝑂 ((𝑝𝑒)𝑑−2). (11)

Let 𝜏 = 𝜏(1𝑅). We set
𝑢𝑒 = 𝜑𝑅,𝐼 (𝑒) − 𝛽(𝑝𝑒)𝑑−1

for some 𝛽 whose value will be clear in the following. Using (11), we calculate

𝑢𝑒+1 − 𝑝𝑑𝑢𝑒 =
[
𝜑𝑅,𝐼 (𝑒 + 1) − 𝛽 𝑝𝑑−1 (𝑝𝑒)𝑑−1

]
− 𝑝𝑑

[
𝜑𝑅,𝐼 (𝑒) − 𝛽 (𝑝𝑒)𝑑−1

]
=

[
𝑝𝑑𝜑𝑅,𝐼 (𝑒) + 𝜏 (𝑝𝑒)𝑑−1 +𝑂 ((𝑝𝑒)𝑑−2)

]
−

[
𝑝 𝜑𝑅,𝐼 (𝑒) + (𝑝𝑑 − 𝑝𝑑−1)𝛽 (𝑝𝑒)𝑑−1 +𝑂 ((𝑝𝑒)𝑑−2

]
= [𝜏 + (𝑝𝑑 − 𝑝𝑑−1)𝛽] (𝑝𝑒)𝑑−1 +𝑂 ((𝑝𝑒)𝑑−2).

Nowby setting 𝛽 =
𝜏

𝑝𝑑−1 − 𝑝𝑑
, the first term following the last equality in the display

above vanishes and hence 𝑢𝑒+1 − 𝑝𝑑𝑢𝑒 = 𝑂 ((𝑝𝑒)𝑑−2). Thus applying Lemma 3.7,
there exists a real number 𝛼 such that

𝑢𝑒 = 𝛼 (𝑝𝑒)𝑑 +𝑂 ((𝑝𝑒)𝑑−2).

Recovering 𝜑𝑅,𝐼 (𝑒) from 𝑢𝑒, we then have the desired form

𝜑𝑅,𝐼 (𝑒) = 𝛼 (𝑝𝑒)𝑑 + 𝛽 (𝑝𝑒)𝑑−1 +𝑂 ((𝑝𝑒)𝑑−2.

Comparing to Monsky’s original result for 𝜑𝑅,𝐼 (𝑒), the leading coefficient 𝛼 must
be the Hilbert-Kunz multiplicity 𝑒𝐻𝐾 (𝑅, 𝐼) as expected.

Step 3. For an arbitrary module 𝑀 , let 𝑇 be the submodule of torsion elements in
𝑀 . We have a short exact sequence 0 −→ 𝑇 −→ 𝑀 −→ 𝑀/𝑇 −→ 0 where 𝑀/𝑇 is
a torsion free module, denoted 𝑀 ′. Tensoring the sequence by 𝑅/𝔪 [𝑝𝑒 ] , we obtain
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a long exact sequence

· · · −→ Tor1 (𝑀 ′, 𝑅/𝔪 [𝑝𝑒 ]) −→ 𝑇/𝔪 [𝑝𝑒 ]𝑇 −→ 𝑀/𝔪 [𝑝𝑒 ]𝑀 −→ 𝑀 ′/𝔪 [𝑝𝑒 ]𝑀 ′ −→ 0.

By [59, Lemma 1.5], we know ℓ(Tor1 (𝑀 ′, 𝑅/𝔪 [𝑝𝑒 ])) = O((𝑝𝑒)𝑑−2). Thus

𝜑𝑀,𝐼 (𝑒) = 𝜑𝑀 ′,𝐼 (𝑒) + 𝜑𝑇 ,𝐼 (𝑒) + O((𝑝𝑒)𝑑−2)
= 𝑟 𝜑𝑅,𝐼 (𝑒) + 𝜏(𝑀 ′) (𝑝𝑒)𝑑−1 + 𝜑𝑇 ,𝐼 (𝑒) + O((𝑝𝑒)𝑑−2)

where 𝑟 = rank𝑀 ′. The proof is completed by noticing that 𝜑𝑅,𝐼 (𝑒) has the desired
form from Step 2 and since dim𝑇 ≤ 𝑑 − 1, we have 𝜑𝑇 ,𝐼 (𝑒) = 𝛽(𝑇) (𝑝𝑒)𝑑−1 +
O((𝑝𝑒)𝑑−2) for some 𝛽(𝑇) ∈ R by [72, Lemma 1.2 and Theorem 1.8]. �
Instead of the normal (R1) + (S2) condition, Kurano and the author consider a

weaker condition in [24]. The ring 𝑅 satisfies (R1′) if the localization of 𝑅 is a field
at any prime ideal of Krull dimension 𝑑, and is a DVR at any prime ideal of Krull
dimension 𝑑−1. The (R1′) condition is similar to, but not the same as the usual (R1).
It can be shown that (4) holds for excellent local rings that satisfy (R1′) but are not
necessarily integral domains. The proof is done by reducing to the assumption that
𝑅 is a normal domain ([24, Theorem 3.2]). (See also [55] for a different approach.)
On the other hand, we observe that each step of the proof in [59] just outlined is

interesting in its own right. These steps work more generally than just in a normal
setting. If 𝑅 is not normal, the divisor class group is no longer well-defined. The
immediate challenge is the description of 𝜏 that leads to the second coefficient
𝛽. The Chow group is a natural substitute for the divisor class group in the non-
normal case. We now describe how to replace divisor classes of modules by cycle
classes. For a finitely generated module 𝑀 , there always exists a finite filtration
of submodules, called a prime filtration, such that the quotient of two consecutive
submodules is isomorphic to a quotient of 𝑅 by a prime ideal. Let 𝑝1, · · · , 𝑝𝑠 be the
prime ideals of codimension 0 or 1 that occur in such a prime filtration. Then these
prime ideals define a cycle class [𝑀] = [𝐴/𝑝1] + · · · + [𝐴/𝑝𝑠] in the Chow group
𝐴∗ (𝑅) (see Subsect. 3.4 for the definition). Since 𝐴∗ (𝑅) = ⊕𝑑

𝑖=0𝐴𝑖 (𝑅) according
to its prime ideal generators, we have [𝑀] ∈ 𝐴𝑑 (𝑅) ⊕ 𝐴𝑑−1 (𝑅). Even though a
collection of such prime ideals 𝔭𝑖’s may not be unique for prime filtrations are not
unique, the class [𝑀] in the Chow group is independent of the choice of filtration
and is additive as proved in [23, Theorem 1 and Corollary 1]. This implies that each
finitely generated module 𝑀 has a unique cycle class defined in the Chow group
obtained by a filtration. Hence the definition of the map 𝜏 can be extended to a
homomorphism from 𝐴𝑑 (𝑅) ⊕ 𝐴𝑑−1 (𝑅) to R. The proof in [59] is extended step
by step to the case where 𝑅 is an integral domain satisfying (R1′) in [24, Sect. 5].
The cycle classes of the modules affect 𝜏 and 𝛽 in the same way as in the normal
situation. This extension also inspires the consideration of an additive error of the
Hilbert-Kunz function which is not additive on short exact sequences. With the 𝜏
map mentioned above, one sees that the additive error always arises from torsion
submodules and is determined by their classes in the Chow group [24, Sect. 4].
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The vanishing of the second coefficient 𝛽 has been of interest since its discovery.
We will return to this topic in Subsect. 3.4. See also Theorem 3.9 for an example
where 𝛽 does not vanish.
The divisor class group will appear again in Subsect. 3.5 when we review the BG

decomposition of normal affine semigroups ([16]). The modules 𝑀 and 𝑀/𝑇 define
the same divisor class (or cycle class) in the divisor class group (resp. Chow group).
From the above sketch,we notice that the leading coefficient of 𝜑𝑀,𝐼 (𝑒) is determined
by the rank of 𝑀 but the second coefficient 𝛽 (or the additive error) depends on the
class of𝑀 (resp. classes of torsion submodules). So in order to understand the second
coefficient, or the remaining terms of the Hilbert-Kunz function, the divisor class
group (or Chow group) cannot be overlooked (see Remark 3.15).

3.3 Via Sheaf Theory

In this subsection, 𝑅 is a standard graded 𝜅-algebra. Sheaf theoretic approaches
were first considered independently by Fakhruddin and Trivedi [41, 104], and by
Brenner [10, 11]. The general idea is that 𝜑𝑅,𝐼 (𝑒) is identified as the alternating sum
of the lengths of sheaf cohomology modules. Then they carefully study the sheaves
occurring in the sequences arising from the resolution of 𝑅/𝐼 to describe 𝜑𝑅,𝐼 (𝑒).
In this subsection, we present one of these approaches, following the argument in

[11, Sect. 6] (equivalent to that by Trivedi in [104]). In that work, Brenner applies
the theory built for locally free sheaves on smooth projective curves to obtain the
Hilbert-Kunz functions of two-dimensional normal domains that are standard graded
𝜅-algebras with an algebraically closed field 𝜅 of positive characteristic 𝑝. In this
case, the Hilbert-Kunz function has the following form

𝜑𝑅 (𝑒) = Φ𝑅 (𝑞) = 𝛼 𝑞2 + 𝛾(𝑞) (12)

where 𝛼 is a rational number([10, 104]), and 𝛾(𝑞) is a bounded function taking on
rational values and is eventually periodic when 𝜅 is the algebraic closure of a finite
field [11]. For detailed background in this subsection, one can also consult Brenner’s
lecture [12].
Let 𝑅+ denote the gradedmaximal ideal of 𝑅 and 𝐼 be a graded ideal primary to 𝑅+

generated by 𝑓1, . . . , 𝑓𝑠 of degree 𝑑1, . . . , 𝑑𝑠 respectively. We consider 𝑌 = Proj(𝑅)
which is assumed to be a smooth projective curve. Equivalently, 𝑅 is normal and
dim 𝑅 = 2. With these, one obtains the following short exact sequence of coherent
sheaves on 𝑌

0 −→ 𝑆𝑦𝑧( 𝑓1, . . . , 𝑓𝑛) (𝑚) −→ ⊕𝑛𝑖=1O𝑌 (𝑚 − 𝑑𝑖)
𝑓1 ,..., 𝑓𝑛−→ O𝑌 (𝑚) −→ 0 (13)

where 𝑚 ∈ Z indicates the twist of the structure sheaf O𝑌 and 𝑆𝑦𝑧( 𝑓1, . . . , 𝑓𝑛) is
known as the syzygy sheaf (or syzygy bundle if locally free).
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We explain below why 𝑆𝑦𝑧( 𝑓1, . . . , 𝑓𝑛) is a locally free sheaf. Let 𝐾 be an 𝑅-
module such that the sequence 0 → 𝐾 → 𝑅𝑛

𝑓1 ,..., 𝑓𝑛−→ 𝑅 → 𝑅/𝐼 → 0 is exact, or
equivalently, 𝑅/𝐼 is the zero-th cohomology of the following complex

0 −→ 𝐾 −→ ⊕𝑛𝑖=1𝑅(−𝑑𝑖)
𝑓1 ,..., 𝑓𝑛−→ 𝑅 −→ 0. (14)

Since 𝐼 is 𝑅+-primary, 𝑅/𝐼 is only supported at 𝑅+. Therefore for any prime ideals 𝔭
not equal to 𝑅+, the localization (𝑅/𝐼)𝔭 = 0. This shows that the above complex (14)
is exact locally at every prime ideal 𝔭 ∈ Proj(𝑅). That is, the following sequence is
exact and it obviously splits since 𝑅𝔭 is free

0 −→ 𝐾𝔭 −→ ⊕𝑛𝑖=1𝑅𝔭 (−𝑑𝑖) −→ 𝑅𝔭 −→ 0. (15)

Hence, as a a direct summand of a finitely generated free module over a local ring,
𝐾𝔭 is a free module. Taking the sheafification of (14), we have the following exact
sequence of locally free sheaves on Proj(𝑅)

0 −→ 𝐾 −→ ⊕𝑛𝑖=1O𝑌 (−𝑑𝑖) −→ O𝑌 −→ 0 (16)

and 𝐾 is precisely the syzygy bundle 𝑆𝑦𝑧( 𝑓1, . . . , 𝑓𝑛) under consideration. The
complex (13) is obtained by twisting (16) by an integer 𝑚; equivalently by tensoring
with O(𝑚). Since (15) is split exact on stalks, so is (13). Thus the complex remains
exact when applying any additive functor, including the tensor product.
Next we consider the absolute Frobenius morphism F : 𝑌 → 𝑌 which is the

identity on the points of 𝑌 and furthermore, on every local ring of sections, it is the
Frobenius homomorphism 𝑓 . The Frobenius pull-back of a sheaf of modules on 𝑌
is obtained by base change along the Frobenius homomorphism, i.e.,

F∗ (𝑀) = �1𝑅 ⊗𝑅 𝑀 = �F(𝑀).

As (13) is split exact on stalks, the Frobenius pull-back of this sequence remains exact.
The resulting locally free sheaves are of the same rank twisted by the appropriate
degree, but the multiplication maps are raised to the 𝑝-th power. One may iterate
this 𝑒 times and the sequence remains exact:

0 −→ (𝑆𝑦𝑧( 𝑓 𝑝
𝑒

1 , . . . , 𝑓
𝑝𝑒

𝑛 )) (𝑚) −→ ⊕𝑛𝑖=1O𝑌 (𝑚 − 𝑝𝑒𝑑𝑖)
𝑓
𝑝𝑒

1 ,..., 𝑓
𝑝𝑒

𝑛−→ O𝑌 (𝑚) −→ 0.
(17)

Taking global sections is a left exact functor. Since 𝑅 is normal, the global sections
of twists of the structure sheaf can be realized as the graded pieces of degree 𝑚:

0 −→ Γ

(
𝑌, (𝑆𝑦𝑧( 𝑓 𝑝

𝑒

1 , . . . , 𝑓 𝑒𝑛 )) (𝑚)
)
−→ ⊕𝑛𝑖=1𝑅𝑚−𝑝𝑒𝑑𝑖

𝑓
𝑝𝑒

1 ,..., 𝑓
𝑝𝑒

𝑛−→ 𝑅𝑚 −→ · · · .

The cokernel at 𝑅𝑚 is the graded piece of degree m in 𝑅/𝐼 [𝑝
𝑒 ] . By definition, the

Hilbert-Kunz function is
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𝜑𝑅,𝐼 (𝑒) = ℓ
(
𝑅/𝐼 [𝑝𝑒 ]

)
=

∑︁
𝑚≥0

ℓ

(
(𝑅/𝐼 [𝑝𝑒 ])𝑚

)
=

∑︁
𝑚≥0
dim𝜅 (Γ(𝑌,O𝑌 (𝑚))/( 𝑓 𝑝

𝑒

1 , . . . , 𝑓
𝑝𝑒

𝑛 )).

(18)
Thus for each 𝑚 ≥ 1, we have

ℓ

(
(𝑅/𝐼 [𝑝𝑒 ])𝑚

)
= ℎ0 (O𝑌 (𝑚))−

𝑛∑︁
𝑖=1

ℎ0 (O𝑌 (𝑚−𝑝𝑒𝑑𝑖))+ℎ0 (𝑆𝑦𝑧( 𝑓 𝑝
𝑒

1 , . . . , 𝑓
𝑝𝑒

𝑛 ) (𝑚)),

(19)
where ℎ0 (·) denotes the 𝜅-dimension of the 0-th cohomology module which is the
module of global sections of the sheaf in the argument.
We remark that (18) is a finite sum since the sum is only defined for 𝑚 ≥ 0. In

addition, the alternating sum in (19) is zero for 𝑚 � 0 due to Serre’s vanishing
theorem. In fact, by [12, Lemma 9.4], it suffices to consider 𝑚 within the certain
range as described in the summation presented in (22) in order to compute the right
hand side of (18) .
To analyze the terms in (19), one reduces to the situation of considering

semistable locally free sheaves. This is done by carefully applying the strong Harder-
Narashimhan filtration on locally free sheaves. To further explain the concepts, we
first recall some definitions and their properties from [10, 11] (see also [12, Chap. 5
and 9]). In the remainder of this subsection, S denotes a locally free sheaf on 𝑌
of rank 𝑟 . The degree and slope of S are defined by degS := deg∧𝑟 (S) and
𝜇(S) := degS/𝑟 . The slope has the property that 𝜇(S1 ⊗ S2) = 𝜇(S1) + 𝜇(S2).
A locally free sheaf S is semistable if 𝜇(T ) ≤ 𝜇(S) for every locally free
subsheaf T ⊆ S. For every locally free sheaf on 𝑌 , there exists a unique
Harder-Narasimhan filtration. This is a finite filtration of locally free subsheaves
S1 ⊂ S2 · · · ⊂ S𝑡 = S such that the quotients S𝑘/S𝑘−1 are semistable and of
decreasing slope: 𝜇(S𝑘/S𝑘−1) > 𝜇(S𝑘+1/S𝑘 ). Naturally the largest and smallest
numbers in the sequence are called the maximal and minimal slopes of S. They are
denoted by 𝜇𝑚𝑎𝑥 (S) and 𝜇𝑚𝑖𝑛 (S) respectively. The sheaf S is semistable if and
only if 𝜇(S) = 𝜇𝑚𝑖𝑛 (S) = 𝜇𝑚𝑎𝑥 (S).
The Frobenius pull-back of a semistable locally free sheaf S is not necessarily

semistable. Let S𝑞 denote the 𝑞-th Frobenius pull-back of S. A locally free sheaf S
is said to be strongly semistable if the pull-back of S𝑞 is semistable for any 𝑒 ≥ 1.
The existence of a filtration with such nice factors is due to a theorem of

Langer [67] (see also [11]): there exists a Frobenius power 𝑞 such that the quotients
in the Harder-Narasimhan filtration of the pull back S𝑞 are strongly semistable. This
is called the strong Harder-Narasimhan filtration (of S𝑞), denoted by

0 ⊂ (S𝑞)1 ⊂ · · · ⊂ (S𝑞)𝑡 = S𝑞 . (20)

We use (S𝑞)𝑘 to indicate the members in the filtration of S𝑞 and to distinguish
it from the pull-back (S𝑘 )𝑞 of S𝑘 whose quotient may not be semistable. For
𝑞′ ≥ 𝑞 � 1, we have the Harder-Narasimhan filtration of S𝑞′

0 ⊂ (S𝑞)𝑞
′/𝑞
1 ⊂ · · · ⊂ (S𝑞)𝑞

′/𝑞
𝑡 = (S𝑞)𝑞′/𝑞 = S𝑞′ . (21)
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We observe that the quotient in (21) (S𝑞)𝑞
′/𝑞
𝑘

/(S𝑞)𝑞
′/𝑞
𝑘−1 = ((S𝑞)𝑘/(S𝑞)𝑘−1)𝑞

′/𝑞

is the pull-back of (S𝑞)𝑘/(S𝑞)𝑘−1. Thus these quotients are semistable since
(S𝑞)𝑘/(S𝑞)𝑘−1 is strongly semistable which follows from Langer’s Theorem. The
slopes of these quotients are decreasing since 𝜇((S𝑞)𝑘/(S𝑞)𝑘−1) > 𝜇((S𝑞)𝑘+1/(S𝑞)𝑘 ).
Therefore (21) is a Harder-Narasimhan filtration of S𝑞′ , as a (𝑞′/𝑞)-th Frobenius
pull-back of S𝑞 . Using (20), for 𝑞 � 1, we consider the normalized slope of the
quotients in the Harder-Narasimhan filtration of S𝑞 and define

�̄�𝑘 = �̄�𝑘 (S) =
𝜇((S𝑞)𝑘/(S𝑞)𝑘−1)

𝑞
.

Similarly to the above argument, for any 𝑞′ ≥ 𝑞 � 0, if we take the Harder-
Narasimhan filtration of S𝑞′ from (21), then

�̄�𝑘 (S𝑞
′) =

𝜇((S𝑞)𝑞
′/𝑞
𝑘

/(S𝑞)𝑞
′/𝑞
𝑘−1 )

𝑞′
=

(𝑞′/𝑞)𝜇((S𝑞)𝑘/(S𝑞)𝑘−1)
𝑞′

=
𝜇((S𝑞)𝑘/(S𝑞)𝑘−1)

𝑞
.

This shows that �̄�𝑘 (𝑆𝑞
′) is independent of 𝑞′ � 1.

With the above, we define the Hilbert-Kunz slope:

𝜇𝐻𝐾 (S) =
𝑡∑︁
𝑘=1

𝑟𝑘 �̄�
2
𝑘 ,

where 𝑟𝑘 = rk((S𝑞)𝑘 )/(S𝑞)𝑘−1). Note that Hilbert-Kunz slope is a positive rational
number. In [10], the Hilbert-Kunz multiplicity of 𝑅 with respect to a homogeneous
𝑅+-primary ideal 𝐼 = ( 𝑓1, . . . , 𝑓𝑛) with deg 𝑓𝑖 = 𝑑𝑖 is expressed in terms of 𝜇𝐻𝐾 as

𝑒𝐻𝐾 (𝑅, 𝐼) =
1

2 deg𝑌

(
𝜇𝐻𝐾 (𝑆𝑦𝑧( 𝑓1, · · · , 𝑓𝑛)) − (deg𝑌 )2

𝑛∑︁
𝑖=1

𝑑2𝑖

)
,

where deg𝑌 = deg(O𝑌 (1)) is the degree of the curve.
We fix some notation before stating the main results regarding the global sections

of locally free sheaves in [11]. Similarly to ℎ0 (·), ℎ1 (·) denotes the 𝜅-dimension of
the first homology of a sheaf.We define 𝑣𝑘 = −�̄�𝑘/deg𝑌 and write d𝑞𝑣𝑘e = 𝑞𝑣𝑘 +𝜋𝑘
with the eventually periodic function 𝜋𝑘 = 𝜋𝑘 (𝑞). For simplicity, we sometimes drop
the argument 𝑞. Let 𝜎 ≤ 𝑣1 and 𝜌 � 𝑣𝑡 be rational numbers. We set d𝑞𝜌e = 𝑞𝜌 + 𝜋.
For 𝑞 = 𝑝𝑒 � 1, using Serre duality, the 𝜅-dimension of the global sections of

the twisted sheaf S𝑞 (𝑚) can be expressed in the following form
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d𝑞𝜌e−1∑︁
𝑚= d𝑞𝜎e

ℎ0 (S𝑞 (𝑚))

=
𝑞2

2 deg𝑌 (𝜇𝐻𝐾 (S) + 2𝜌 deg (𝑆) deg𝑌 + 𝜌2 rk(S) deg(𝑌 )2)
+𝑞

(
𝜌 rk(S) + deg Sdeg𝑌

) (
1 − 𝑔 − deg𝑌

2

)
+ 𝑞𝜋(degS + 𝜌 rk(S) deg𝑌 )

+ rk(S)𝜋
(
(𝜋 − 1) deg𝑌2 + 1 − 𝑔

)
−

𝑡∑︁
𝑘=1

𝑟𝑘𝜋𝑘

(
𝜋𝑘 − 1)

deg𝑌
2

+ 1 − 𝑔
)

+
𝑡∑︁
𝑘=1

©«
d𝑞𝑣𝑘 e+d deg𝜔deg𝑌 e∑︁
𝑚= d𝑞𝑣𝑘 e

ℎ1 (((S𝑞)𝑘/(S𝑞)𝑘−1) (𝑚))
ª®®¬ ,

(22)

where 𝑔 is the genus and 𝜔 is the canonical sheaf of the curve 𝑌 respectively.
The proof of the above expression in [11, Theorem 3.2] utilizes the fact that the

rank and degree are additive on short exact sequences and that the Hilbert-Kunz
slope is additive on the quotients in the strong Harder-Harasimhan filtration.
A main theorem in [11] is stated as follows.

Theorem 3.8 (Brenner [11, Theorem 4.2]) Assume that 𝜅 is an algebraically closed
field of positive characteristic p. Let 𝑌 be a smooth projective curve over 𝜅. Let S
denote a locally free sheaf on 𝑌 and S𝑞 is the 𝑞-th Frobenius pull-back of S. Let
𝜎 ≤ 𝑣1 and 𝜌 � 𝑣𝑡 denote rational numbers. Then we have

d𝑞𝜌e−1∑︁
𝑚= d𝑞𝜎e

ℎ0 (S𝑞 (𝑚)) = 𝛼𝑞2 + 𝛽(𝑞)𝑞 + 𝛾(𝑞),

where 𝛼 is a rational number and 𝛽(𝑞) is an eventually periodic function and 𝛾(𝑞)
is a bounded function (both with rational values). Moreover, if 𝜅 is the algebraic
closure of a finite field, then 𝛾(𝑞) is also an eventually periodic function.

We outline the proof of Theorem 3.8 paying special attention to why 𝛾(𝑞) is
eventually periodic when the ground field 𝜅 is the algebraic closure of a finite field.

Beginning of the sketch. The first statement on the summation of the global
sections is a consequence of (22) once the last summand is understood. One observes
that all the values in (22) including the Hilbert-Kunz slope 𝜇𝐻𝐾 (S) are rational
numbers. Thus the leading coefficient 𝛼 of 𝑞2 is rational and 𝛽(𝑞) and 𝛾(𝑞) are both
rational valued. The function 𝛽(𝑞) depends on 𝜋 which is a periodic function of
𝑞 � 1. Hence it is eventually periodic. The boundedness of 𝛾(𝑞) is a result of [11,
Lemma 4.1] which proves the existence of an upper bound of the sum of ℎ1 terms
(22).
Below, we point out two facts in the proof of [11, Theorem 4.2] that lead to the

periodicity of 𝛾(𝑞) under the assumption that 𝜅 is an algebraic closure of a finite field.
For a given rational number 𝑣, write 𝑚(𝑞) = d𝑞𝑣e = 𝑞𝑣 + 𝜋(𝑞) with 0 ≤ 𝜋(𝑞) < 1.
Notice that 𝜋(𝑞) is an eventually periodic function. Let 𝑞 denote its period.
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Fact 1. deg(S𝑞 (𝑚(𝑞)) is eventually periodic with period 𝑞.
We consider a subset 𝑀 of N of the type 𝑀 = {𝑞0𝑞ℓ |ℓ ∈ N} where 𝑞0 = 𝑝𝑒0 for

some 𝑒0 and satisfies 1 ≤ 𝑞0 < 𝑞.
Fact 2. S𝑞�̃� (𝑚(𝑞)) = S𝑞 (𝑚(𝑞))�̃� ⊗ O((−𝑞 + 1)𝜋(𝑞)) for all 𝑞 ∈ 𝑀 .
From Fact 1, all S𝑞 (𝑚(𝑞)) with 𝑞 ∈ 𝑀 have the same degree. Furthermore, due

to the fact that there are only finitely many semistable locally free sheaves with the
same fixed degree on𝑌 defined over the finite field of which 𝜅 is an algebraic closure,
the following set

𝒮 := {S𝑞 (𝑚(𝑞)) |𝑞 ∈ 𝑀}

is a finite set. Then, Fact 2 gives a recursive relation as 𝑞 varies in 𝑀 . Since 𝒮 is a
finite set, this relation leads to an eventually periodic pattern. Other sheaves, namely
S𝑞 (𝑚(𝑞)) where 𝑞 ∉ 𝑀 , can be identified as S𝑞 (𝑚(𝑞) + 𝑠) = S𝑞 (𝑚(𝑞)) ⊗ O(𝑠) for
some 𝑞 ∈ 𝑀 and 𝑠 taking values in a fixed bounded interval. Thus they will occur
eventually periodically as some element from 𝒮 tensored by O𝑌 (𝑠) with 𝑠 in the
same fixed bounded interval. The ℎ1 terms in 𝛾(𝑞) are determined by the sheaves
S𝑞 (𝑚(𝑞)) just described. Hence they inherit the periodic behavior. End of the sketch.
�
Nowwe return to the function 𝜑𝑅,𝐼 (𝑒). By (16), (18) and (19), it can be expressed

in terms of the Frobenius pull-back

𝜑𝑅,𝐼 (𝑒) = Φ𝑅,𝐼 (𝑞) =
∑︁
𝑚≥0

ℎ0 (O𝑞 (𝑚)) −
𝑛∑︁
𝑖=1

(∑︁
𝑚≥0

ℎ0 ((O(−𝑑𝑖))𝑞 (𝑚))
)

+
∑︁
𝑚≥0

ℎ0 (S𝑞 (𝑚)),
(23)

where S = 𝑆𝑦𝑧( 𝑓1, . . . , 𝑓𝑛). The last summand in (23) can be written using (22).
The range of the sum is given in [12, Lemma 9.4]. Hence by Theorem 3.8, the
Hilbert-Kunz function has the form

Φ𝑅,𝐼 (𝑞) = 𝛼𝑞𝑑 + 𝛽𝑞𝑑−1 + 𝛾(𝑞).

Furthermore, we observe that the coefficients of 𝑞 in (22) are linear combinations of
ranks and degrees which are additive on short exact sequences. Thus they will cancel
each other in the sum (23). Hence the linear coefficient 𝛽 always vanishes in the case
of smooth projective curves. This gives the Hilbert-Kunz function the desired form
Φ𝑅,𝐼 (𝑞) = 𝛼𝑞2 + 𝛾(𝑞) in (12).
By Theorem 3.8, we know that 𝛾(𝑞) is bounded. In addition, if 𝜅 is the algebraic

closure of a finite field, 𝛾(𝑞) is an eventually periodic function (see [11, Theo-
rem 6.1]). We note that the proof of (12) and the periodicity of 𝛾(𝑞) has been known
prior to [11] for other cases such as in [31, 19, 73, 103, 41, 80, 76, 14, 81] where
the finiteness condition on the field is not needed. On the other hand, if 𝜅 is not the
algebraic closure of a finite field, i.e., if 𝜅 is transcendental over any finite subfield,
then whether or not 𝛾(𝑞) is eventually periodic is an open question in general.
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A similar approach for smooth algebraic curves can be found in Trivedi [104].
The above sheaf theoretic approach depends heavily on the smoothness condition on
the curve 𝑌 . Without smoothness, the Frobenius functor is not an exact functor, and
torsion free sheaves are not necessarily locally free. Monsky [77] extends Brenner
and Trivedi’s method to irreducible projective plane curves without smoothness, and
then a linear term appears in Φ𝑅,𝐼 (𝑞). The following Theorem 3.9, quoted from
[12, Theorem 9.10], summarizes the very interesting results of [77] which show that
appearance of 𝛽 reflects the existence of singularities. In this theorem, the Hilbert-
Kunz functionsΦ𝑅,𝐼 (𝑞) are taken with respect to 𝐼 = (𝑥, 𝑦, 𝑧) and arbitrary 𝑓 . Then
in [79], Monsky focused on nodal curves recovering a result of Pardue [82] when
𝐼 = (𝑥, 𝑦, 𝑧), and also extended the result to cases of arbitrary 𝐼 primary to (𝑥, 𝑦, 𝑧).
More specifically, Monsky [79] applied Brenner and Trivedi’s method, together
with the theory for indecomposable vector bundles developed by Burban[20], and
obtained a sharp result. Precisely, one has Φ𝑅,𝐼 (𝑞) = 𝛼𝑞2 + 𝛽𝑞 + 𝛾(𝑞) for any ideal
𝐼 primary to (𝑥, 𝑦, 𝑧). The leading and second coefficients 𝛼 and 𝛽 (nonzero) are
constant with explicit formulas given in the paper. Moreover, when 𝑝 ≠ 3, 𝛾(𝑞) is
a periodic function depending on 𝑞 modulo 3; otherwise 𝛾(𝑞) is a constant. Thus
Φ𝑅,𝐼 (𝑞) is a polynomial function when 𝑝 = 3.

Theorem 3.9 (Monsky [77, Theorems I & II]) Let 𝐶 = Proj(𝑅) be an irreducible
projective plane curve where 𝑅 = 𝜅 [𝑥, 𝑦, 𝑧]/( 𝑓 ) with a homogeneous 𝑓 of degree 𝑑.
Then

𝜑𝑅 (𝑒) = ℓ(𝑅/(𝑥𝑝
𝑒

, 𝑦𝑝
𝑒

, 𝑧𝑝
𝑒

, 𝑓 ) = ( 3𝑑
4

+ 𝑎2

4𝑑
) (𝑝𝑒)2 + 𝑏∗𝑒 ·

𝑎

𝑑
𝑝𝑒 + 𝛾(𝑝𝑒),

where 𝑎 ∈ Z[ 1
𝑝
], 0 < 𝑎 < 𝑑, and 𝑏∗𝑒 is a periodic integer-valued function. The

function 𝑏∗𝑒 can be written as 𝑏∗𝑒 =
∑
𝑄 𝛽

∗
𝑄
(𝑒) where the sum runs over the singular

points 𝑄 of 𝐶 and 𝛽∗
𝑄
(𝑒) is an integer-valued periodic function for each 𝑄. The

function 𝛾(𝑝𝑒) is bounded and is eventually period if 𝜅 is an algebraic closure of a
finite field.

We remark that the coefficient of 𝑝𝑒 in the above theorem does not necessarily
vanish and in fact it is described by the singular points on 𝐶. Monsky’s papers
[77, 79] provide some examples and are interesting resources for those who are
interested in the technique presented in this subsection.
Finally we would like to point out that this sheaf theoretic approach has also been

applied to study the uniformity of the limit Hilbert-Kunz function as described in
Application 3.5.

3.4 Via Local Chern Characters

In this subsection, we present an application of algebraic intersection theory to
the study of Hilbert-Kunz functions. We start with a brief introduction to some
fundamental notions of this theory in the local ring setting. Thenwe present Kurano’s
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theorem that expresses Φ𝑅,𝐼 (𝑞) in terms of local Chern characters, followed by
discussions on the vanishing property of the second coefficient, and the existence of
Hilbert-Kunz functions in a polynomial form with desired coefficients.
Let (𝑅,𝔪) be a Noetherian local domain of positive characteristic 𝑝 and dim 𝑅 =

𝑑. We assume also that 𝑅 is a homomorphic image of a regular local ring (in order to
define its Todd class). Let G• be a bounded complex of free modules of finite ranks
such that all the homology modules have finite length. We call such G• a perfect
complex supported at 𝔪, although we will abbreviate this to perfect complex here.
The local Chern character ch(G•) is a fundamental piece of machinery in inter-

section theory and is often defined in the setting of projective schemes. Here we
describe ch(G•) and other relevant terms following Roberts [87] where the defini-
tions over local rings (in the setting of affine schemes) are provided in addition to
their projective version. (See also Fulton [43] for the general theory.)
We begin by defining the Chow group of 𝑅 which is decomposed into a direct

sum of subgroups: 𝐴∗ (𝑅) = ⊕𝑑
𝑖=0𝐴𝑖 (𝑅) where each 𝐴𝑖 (𝑅) is a quotient of a free

group 𝑍𝑖 (𝑅) modulo rational equivalence and 𝑍𝑖 (𝑅) is generated by prime ideals
𝔭 of dim 𝑅/𝔭 = 𝑖. We use [𝑅/𝔭] to denote an element in 𝑍𝑖 (𝑅) and, by abuse of
notation, its equivalence class in 𝐴𝑖 (𝑅). For any prime ideal 𝔮 of dim 𝑅/𝔮 = 𝑖 + 1
and 𝑥 not in 𝔮, we define div(𝔮, 𝑥) in 𝑍𝑖 (𝑅) as div(𝔮, 𝑥) =

∑
𝔭 ℓ(𝑅/(𝔮 + (𝑥))𝔭) [𝑅/𝔭]

where the summation is taken over all prime ideals 𝔭 of dimension 𝑖 containing 𝔮
and 𝑥. Notice that this is a finite sum since all the 𝔭 in the sum are minimal prime
ideals of 𝑅/(𝔮 + (𝑥)) and there are only finitely many of them. Rational equivalence
is the equivalence relation on 𝑍𝑖 (𝑅) induced by setting all div(𝔮, 𝑥) = 0. Applying
this definition to 𝑅/𝔪 in place of 𝑅 gives the Chow group of 𝑅/𝔪 as a free group
of rank one. Indeed 𝐴∗ (𝑅/𝔪) = 𝐴0 (𝑅/𝔪) = Z · [𝑅/𝔪]. Its tensor product with the
rational number field is denoted 𝐴∗ (𝑅/𝔪)Q := 𝐴∗ (𝑅/𝔪) ⊗Z Q. (c.f. [87, Sect. 1.1]).
Let G• be a perfect complex as defined above. The local Chern character ch(G•)

is a map from 𝐴∗ (𝑅) to 𝐴∗ (𝑅/𝔪)Q. For any class 𝛼 in 𝐴∗ (𝑅), the notation ch(G•) (𝛼)
means applying sufficiently many hyperplane sections arising from the complex G•
to the class 𝛼. Many details are involved to assure that ch(G•) is a well-defined
map. For this we refer the readers to Roberts [87, Sect. 11.5] which will further
lead to appropriate references for the precise definitions in each step along the way.
Here we mention some properties about the Chern characters. First, the local Chern
character is additive. Second, it decomposes as ch(G•) = ch𝑑 (G•) + ch𝑑−1 (G•) +
· · · + ch0 (G•). Each ch𝑖 (G•) results in 𝑖 hyperplane sections so the dimension will
drop exactly by 𝑖. Hence for any 𝛼 ∈ 𝐴∗ (𝑅), if we consider its decomposition in
𝐴∗ (𝑅) as 𝛼 = 𝛼𝑑 + 𝛼𝑑−1 + · · · + 𝛼0, then ch𝑖 (G•) (𝛼 𝑗 ) = 0 for 𝑖 ≠ 𝑗 , and thus
ch(G•) (𝛼) =

∑𝑑
𝑖=0 ch𝑖 (G•) (𝛼𝑖). We note also that the local Chern character can be

defined for a bounded complex supported at a larger spectrum; that is, for those
bounded complexes whose homology modules need not have finite length. In this
case, the target Chow group will also be larger. This fact will be used in the definition
of the Todd class below.
Now we describe the Todd class. Following Roberts [87, Sect. 12.4], it is defined

for bounded complexes of finitely generated modules. Let M• be such a complex
supported at an ideal 𝔞. By assumption, 𝑅 is a homomorphic image of a regular local
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ring, say 𝑆. Viewing M• as a complex over 𝑆, we take a finite free resolution H•
of M• over 𝑆. Consider the class [𝑆] defined by the zero ideal in the Chow group
𝐴∗ (𝑆). The Todd class of M• is given by td(M•) = ch(H•) ( [𝑆]) where ch(H•) is
defined in a more general sense than previously described and as a result, td(M•)
is a class in 𝐴∗ (𝑅/𝔞)Q. It is important to note that the definition of the Todd class
is independent of the choice of the regular local ring 𝑆. The Todd class can also be
defined for an 𝑅-module 𝑀 by considering it as a complex concentrated in degree
0. In the special case of M• being a perfect complex, [87, Theorem 12.4.2] relates
the Todd class to the Euler characteristic

td(M•) = 𝜒(M•) [𝑅/𝔪], (24)

which is part of the local Riemann-Roch formula to be described next.
Local Chern characters do not have well-behaved functorial properties, namely,

they do not commute with push-forwards or pull-backs. Todd classes are introduced
to fill in this gap via Riemann-Roch Theorem (c.f. Serre [95, Introduction]). The
Riemann-Roch Theorem can be stated in many different forms depending on the
context. The local Riemann-Roch Formula ([87, Sect. 12.6]) relates local Chern
characters to the Euler characteristic. It states that

td(G• ⊗𝑅 𝑀) = ch(G•) (td(𝑀)). (25)

By assumption, G• is perfect which implies that G• ⊗𝑅 𝑀 is also perfect. Thus (24)
and (25) together give

𝜒(G• ⊗𝑅 𝑀) [𝑅/𝔪] = ch(G•) (td(𝑀)). (26)

Notice that the local Chern character ch(G•) maps into the rational Chow group
of 𝑅/𝔪, or precisely Q · [𝑅/𝔪]. Thus its image may be identified with a rational
number.
Now replacing 𝑀 by 𝑒𝑅 yields

𝜒G• (𝑒𝑅) = ch(G•) (td(𝑒𝑅)). (27)

(See also Fulton [43, Example 18.3.12]).

Theorem 3.10 (Kurano [65, 66]) Let 𝑅 be a local ring that satisfies the following
conditions:
(𝑖) 𝑅 is the homomorphic image of a regular local ring whose residue field is perfect;
(𝑖𝑖) 𝑅 is 𝐹-finite;
(𝑖𝑖𝑖) 𝑅 is a Cohen-Macaulay ring.
Let 𝐼 be an 𝔪-primary ideal of finite projective dimension and let G• be a finite free
resolution of 𝑅/𝐼. Then

𝜑𝑅,𝐼 (𝑒) = (ch(G•) (𝑐𝑑)) (𝑝𝑒)𝑑 + (ch(G•) (𝑐𝑑−1)) (𝑝𝑒)𝑑−1 + · · · + (ch(G•) (𝑐0)),
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where 𝑐𝑖 is the 𝑖-th Todd class of 𝑅 in the 𝑖-th component of the Chow group, namely
td(𝑅) = 𝑐𝑑 + · · · + 𝑐0 ∈ 𝐴∗ (𝑅).

With the prior preparation, we now bring up two main facts that lead to the results
above: (1) one has td𝑖 (𝑒𝑅) = 𝑝𝑖𝑒𝑐𝑖 ∈ 𝐴𝑖 (𝑅) ([66, Lemma 2.2(iii)]); and (2) for any
𝑖, the 𝑖-th Chern character maps 𝑐𝑖 to a rational number but all other 𝑐 𝑗 to zero.
In other words, ch(G•) (𝑐𝑖) = ch𝑖 (G•) (𝑐𝑖) is a rational number in 𝐴∗ (𝑅/𝔪)Q � Q.
Therefore by (5) and (27)

𝜑𝑅,𝐼 (𝑒) = 𝜒G• (𝑒𝑅)
= ch(G•) (td(𝑒𝑅))
=

∑𝑑
𝑖=0 ch𝑖 (G•)

(
(𝑝𝑒)𝑑𝑐𝑑 + (𝑝𝑒)𝑑−1𝑐𝑑−1 + · · · + 𝑐0

)
=

∑𝑑
𝑖=0 (ch𝑖 (G•) (𝑐𝑖)) (𝑝𝑒)𝑖 .

Or equivalently with 𝑞 = 𝑝𝑒,

Φ𝑅,𝐼 (𝑞) = (ch(G•) (𝑐𝑑)𝑞𝑑 + (ch(G•) (𝑐𝑑−1))𝑞𝑑−1 + · · · + (ch(G•) (𝑐0)). (28)

This is a polynomial in 𝑞 of degree 𝑑 and all the coefficients are rational numbers.
The leading coefficient, which never vanishes, is the Hilbert-Kunz multiplicity.

However, the second coefficient 𝛽𝐼 (𝑅) = ch𝑑−1 (G•) (𝑐𝑑−1) can sometimes vanish,
for instance, in the case of a two-dimensional normal domain as observed in [59] and
[11]. More generally, from Kurano [66, Corollary 1.4], we learn that if 𝑅 satisfies the
conditions (i) and (ii) above, and 𝑅 is normal and Q-Gorenstein (i.e., the canonical
module defines a torsion element in the divisor class group), then 𝛽𝐼 (𝑅) vanishes.
This is also true for the second coefficient in the function Φ𝑀,𝐼 (𝑞) of a module 𝑀 .
In [24, Theorem 3.5], the vanishing property of 𝛽 is characterized by the classes

in the Chow group. For example, the vanishing of 𝛽𝐼 (𝑅) for every 𝐼 is equivalent
to the fact that the second top Todd class 𝜏𝑑−1 = td𝑑−1 (𝑅) is numerically equivalent
to zero, i.e., ch(G•) (𝜏𝑑−1) = 0 for any perfect complex G•. Furthermore, if the
localization 𝑅𝔭 is Gorenstein for all minimal prime ideals 𝔭, then 𝛽𝐼 (𝑅) = 0 if
and only if 𝜏𝑑−1 and its canonical module 𝜔𝑅 are numerically equivalent, namely,
ch(G•) (𝜏𝑑−1) = ch(G•) (𝜔𝑅) for any G• that is again perfect.
Theorem 3.10 also makes it possible to prove the existence of Cohen-Macaulay

local rings such that the Hilbert-Kunz functions have polynomial expressions as in
(28) and their rational coefficients have the desired positive, negative or vanishing
properties ([25, Theorem 1.1]). The theorem states that if 𝜖0, 𝜖1, . . . , 𝜖𝑑 are integers
such that 𝜖𝑖 = 0 for 𝑖 ≤ 𝑑/2, 𝜖𝑖 = −1, 0, or, 1 for 𝑑/2 < 𝑖 < 𝑑 and 𝜖𝑑 = 1, then
there exists a 𝑑-dimensional Cohen-Macaulay local ring 𝑅 of characteristic 𝑝, an
𝔪-primary ideal 𝐼 of 𝑅 of finite projective dimension, and positive rational numbers
𝛽0, 𝛽1, . . . , 𝛽𝑑 such that Φ𝑅,𝐼 (𝑞) =

∑𝑑
𝑖=0 𝜖𝑖𝛽𝑖𝑞

𝑖 for all 𝑖 > 0. In [25], a convex
cone in a finite dimensional vector space, named Cohen-Macaulay cone, spanned
by maximal Cohen-Macaulay modules is introduced to carry out the proof. This
theorem proves the existence but does not offer a constructive method to build a ring
with the desired Hilbert-Kunz function.
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In general, it is difficult to construct rings that have specific forms of Hilbert-
Kunz functions. This is true even in the setting of affine semigroup rings. (See also
Remark 5.5.) Investigations in this direction can provide not only desired Hilbert-
Kunz functions but also, as shown in Theorem 3.10, a possible approach to access
local Chern characters whose values are equally, if not more, challenging to obtain.

3.5 Via Bruns-Gubeladze (BG) Decomposition

This subsection describes a cellular decomposition on R𝑑 and its fundamental do-
main when 𝑅 is a normal affine semigroup ring. There are one-to-one correspon-
dences between the set of full dimensional cells in this decomposition, the set of
conic divisor classes, and the set of rank one modules as direct summands of an
extension ring of 𝑅. Then we present Bruns’s ideas of using these correspondences
to calculate Hilbert-Kunz functions.
Let 𝜅 be an algebraically closed field of positive characteristic 𝑝 and 𝑅 be a

𝑑-dimensional normal 𝜅-subalgebra of the polynomial ring 𝜅 [𝑡1, · · · , 𝑡𝑑] generated
by finitely many monomials. Then the exponents of monomials in 𝑅 form a finitely
generated monoid 𝑀 in Z𝑑 . Such an 𝑅 is called an affine semigroup ring, denoted by
𝑅 = 𝜅 [𝑀]. We useQ≥0𝑀 (and R≥0𝑀) to denote the extended rational cone spanned
by 𝑀 in Q𝑑 (resp. R𝑑), and Z𝑀 to denote the free abelian group generated by 𝑀 .
Then Z𝑀 has rank 𝑑 since dim 𝑅 = 𝑑. We assume Z𝑀 equals the ambient group
Z𝑑 . The assumption that 𝑅 is a normal domain is equivalent to a condition on the
semigroup: Z𝑀 ∩ Q≥0𝑀 = 𝑀 (c.f. [51]). Let 1

𝑛
𝑀 = { 𝑥

𝑛
: 𝑥 ∈ 𝑀} and consider

𝑅
1
𝑛 = 𝜅 [ 1

𝑛
𝑀] as an extension ring of 𝑅. Sect. 4 is devoted to the affine semigroup

rings where relevant definitions and terms will be stated in more detail.
The idea of a cellular decomposition of R𝑑/Z𝑑 as a quotient group grew out of

Bruns and Gubeladze’s work [17] that investigates the minimal number of generators
and depth of the divisorial ideal classes of a normal affine semigroup ring in general.
Later it was constructed precisely with the lattice structure in Bruns [16] which
we now refer to as BG decomposition. Some readers might find it helpful to read
Sect. 4 before proceeding to the current subsection. Here as part of the section for
techniques, we present the main theorems on the BG decomposition in [16] that
leads to the computation of the Hilbert-Kunz function of a normal affine semigroup
ring 𝑅 with respect to the maximal ideal generated by all monomials other than 1.
Let 𝜎1, . . . , 𝜎ℓ be the linear functionals that define the support hyperplanes for

𝑀 so that 𝜎𝑖 (𝑀) ≥ 0 for all 𝑖 = 1, . . . , ℓ. Since rankZ𝑀 = dim 𝜅 [𝑀] = 𝑑, we have
ℓ ≥ 𝑑 and the set of support hyperplanes is uniquely determined if it is irredundant.
The map 𝜎 = (𝜎1, . . . , 𝜎ℓ) : 𝑀 → Zℓ is called the standard embedding (c.f. [17])
which has also been used in Hochster [51] and Stanley [100]. Such a 𝜎 transforms
a normal semigroup to an isomorphic subsemigroup in Zℓ that is said to be full in
[51] or pure in [17]. While normality is independent of the embeddings, “fullness"
(resp. “pureness") is a notion relative to the embedding. But we will not get into the
details on this issue here.
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Obviously 𝜎 can be extended to define a linear homomorphism on R𝑑 and
𝜎(R𝑑) � R𝑑 ⊆ Rℓ . We obtain a cell decomposition Γ of R𝑑 by the hyperplanes

𝐻𝑖,𝑧 = {𝑥 ∈ R𝑑 |𝜎𝑖 (𝑥) = 𝑧}, 𝑖 = 1, . . . , ℓ, and 𝑧 ∈ Z,

which then induces a cell decomposition Γ̄ on R𝑑/Z𝑑 . For concreteness, both Γ and
Γ̄ will both be called the BG decomposition.
A conic divisorial ideal in [17, 16] is defined to be

𝐶 (𝑦) = 𝜅 · (Z𝑑 ∩ (𝑦 + R+𝑀)), 𝑦 ∈ R𝑑 ,

and it should be considered as the ideal of 𝑅 generated by themonomials correspond-
ing to the lattice points on the right hand side. Conic divisorial ideals are among
the divisorial ideals that generate the divisor class group Cl(𝑅). The set of conic
divisor classes in Cl(𝑅) contains all torsion elements but it can be larger if Cl(𝑅) is
nontorsion ([17, p. 141], [16, Corollary1.3]). The following bijections are the key to
the discussions in this subsection.

Theorem 3.11 (Bruns [16, Corollary 1.2]) The following sets are in a bijective
correspondence:
(𝑎) the set of conic divisor classes ;
(𝑏) the fibers of the map R𝑑/Z𝑑 → Rℓ/𝜎(Z𝑑) induced by 𝑥 ↦→ d𝜎(𝑥)e;
(𝑐) the full dimensional cells of Γ̄.

Let �̄� be a full-dimensional cell in Γ̄ represented by some full-dimensional 𝛾 in
Γ. Fix an element 𝑦 in 𝛾, the upper closure of 𝛾 is defined to be

d𝛾e = {𝑥 ∈ R𝑑 | d𝜎(𝑥)e = d𝜎(𝑦)e}.

This closure, however, is independent of 𝑦. Theorem 3.11 shows that all the conic
ideals C(𝑥) with 𝑥 ∈ d𝛾e coincide in Cl(𝑅). Thus we may use C𝛾 to denote such a
conic ideal class. We recall 𝑅

1
𝑛 = 𝑘 [ 1

𝑛
𝑀] for any positive integer 𝑛. For each residue

class 𝑐 ∈ ( 1
𝑛
Z𝑀)/Z𝑀 , let 𝐼𝑐 be the ideal generated by 𝑅

1
𝑛 ∩ 𝑘 · 𝑐. Since 𝑀 is normal,

𝐼𝑐 is equivalently generated by monomials corresponding to R≥0𝑀 ∩ (𝑐 + Z≥0𝑀),
and so it defines the same conic divisor class as C(−𝑐) which must be isomorphic to
C𝛾 for some full dimensional cell 𝛾 by Theorem 3.11. This shows that the set of 𝐼𝑐
corresponds to a subset of the conic divisor classes. Then by [17, Proposition 3.6]
we know that the set of 𝐼𝑐 and the set of the conic divisor classes are in a one-to-one
correspondence.
By [17, Theorem 3.2(a)], 𝑅

1
𝑛 can be decomposed as an 𝑅-module into the direct

sum of 𝐼𝑐 over all 𝑐 ∈ ( 1
𝑛
Z𝑀)/Z𝑀 with rank𝑅 𝐼𝑐 = 1. This implies that the rank

of 𝑅
1
𝑛 is the number of the residue classes in ( 1

𝑛
Z𝑀)/Z𝑀 . Furthermore, each 𝐼𝑐

corresponds to a unique conic divisor class C𝛾 , but there may be multiple 𝐼𝑐’s that
correspond to the same C𝛾 . Let 𝜈𝛾 (𝑛) be themultiplicity withwhich the isomorphism
class of C𝛾 occurs in the decomposition of 𝑅

1
𝑛 as an 𝑅-module. From the previous

discussion, it is not difficult to see that 𝜈𝛾 (𝑛) = #{𝐼𝑐 |𝑐 ∈ d𝛾e}.
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Theorem 3.12 [16, Theorem 3.1] Let 𝛾 be a full-dimensional cell in Γ. Then

𝜈𝛾 (𝑛) = #(d𝛾e ∩
1
𝑛
Z𝑑).

Furthermore, there exists a quasi-polynomial 𝑞𝛾 (𝑛) : Z → Z with rational coeffi-
cients such that 𝑞𝛾 (𝑛) = 𝜈𝛾 (𝑛) for all 𝑛 ≥ 1. In particular,

𝑞𝛾 (𝑛) = vol(𝛾) 𝑛𝑑 + 𝑏𝛾𝑛𝑑−1 + 𝑞𝛾 (𝑛), 𝑛 ∈ Z,

where vol(𝛾) is the volume of 𝛾, 𝑏𝛾 is a constant and 𝑞𝛾 (𝑛) is a quasi-polynomial
of degree 𝑑 − 2.

The first statement in Theorem 3.12 holds due to the fact that 𝐼𝑐 � 𝐶 (−𝑐) if and
only if (−𝑐 + Z𝑑) ∩ d𝛾e ≠ ∅. Given this, the relation of 𝜈𝛾 (𝑛) to a quasipolynomial
𝑞𝛾 (𝑛) is not a surprise. In fact, since all the vertices of d𝛾e have rational coordinates,
we observe that

#(d𝛾e ∩ 1
𝑛
Z𝑑) = #((𝑛 · d𝛾e) ∩ Z𝑑),

where (𝑛 · d𝛾e) is the region inR𝑑 whose vertices are 𝑛 times those of d𝛾e. Therefore,
𝜈𝛾 (𝑛) counts the number of lattice points in the dilated d𝛾e. This is exactly the
generalized Ehrhart function which will be described in Sect. 4. And that 𝜈𝛾 (𝑛) is
a quasipolynomial is a direct consequence of the a polycell version of Theorem 4.2
which will be explained also in the next section. It has been known that the leading
coefficient of the generalized Ehrhart polynomial can be described by the volume
and hence it is a constant. The remaining coefficients are periodic functions in 𝑛.
However, in the setting of the previous Theorem 3.12, Bruns further refines the
results from Theorem 4.2 and identifies that the second coefficient is also a constant.
This refinement leads to the existence of the second coefficient of the Hilbert-Kunz
function in the following Theorem 3.13 that matches the more general case of normal
domains proved in [59] as discussed in Subsect. 3.2.
The BG decomposition takes place for any positive integer 𝑛. However, if the

coefficient field 𝜅 has positive characteristic 𝑝, we may restrict 𝑛 to be powers of 𝑝 to
obtain Hilbert-Kunz functions. In what follows, we use 𝜇𝑅 (·) to denote the minimal
number of generators of an 𝑅-module.

Theorem 3.13 ([16, Corollary 3.2(a)]) Let 𝜅 be an algebraically closed field of
characteristic 𝑝 > 0 and 𝑀 a normal finitely generated monoid of rank 𝑑. Set
𝑅 = 𝜅 [𝑀] and let 𝔪 be the maximal ideal of 𝑅 generated by the monomials whose
exponents are in 𝑀\{0}. Let 𝛾 be a full-dimensional cell as described above and
𝐶𝛾 be the conic ideal corresponding to 𝛾. Then the Hilbert-Kunz function of 𝑅 with
respect to 𝔪 is a quasipolynomial with constant leading and second coefficients.
Precisely

𝜑𝑅 (𝑒) =
∑︁
𝛾

𝜇𝑅 (𝐶𝛾) 𝜈𝛾 (𝑝𝑒) (29)

for all positive integers 𝑒.
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Proof Recall 𝑞 = 𝑝𝑒 and 𝑅
1
𝑞 = 𝜅 [ 1

𝑞
𝑀]. Since 𝜅 is perfect, we have the following

𝜅-algebra isomorphism induced by the Frobenius map,

𝑅/𝔪 [𝑞 ] � 𝑅
1
𝑞 /𝔪𝑅

1
𝑞 .

Obviously dim𝜅 𝑅/𝔪 [𝑞 ] = dim𝜅 𝑅
1
𝑞 /𝔪𝑅

1
𝑞 ≤ 𝜇𝑅 (𝑅

1
𝑞 ). By Nakayama’s Lemma, the

reverse of the last inequality also holds. Hence we have dim𝜅 𝑅
1
𝑞 /𝔪𝑅

1
𝑞 = 𝜇𝑅 (𝑅

1
𝑞 ).

We recall also that 𝐼𝑐’s are the rank one direct summands in the decomposition
of 𝑅

1
𝑞 as 𝑅-modules. Therefore, we have

dim𝜅 𝑅/𝔪 [𝑞 ] = 𝜇𝑅 (𝑅
1
𝑞 ) = 𝜇𝑅 (⊕𝑐 𝐼𝑐)

=
∑
𝑐 𝜇𝑅 (𝐶𝛾), (since 𝐼𝑐 � 𝐶𝛾 for some 𝛾)

=
∑
�̄� 𝜇𝑅 (𝐶𝛾) · #(𝐼𝑐 isomorphic to 𝐶𝛾)

=
∑
�̄� 𝜇𝑅 (𝐶𝛾) 𝜈𝛾 (𝑞).

Hence
Φ𝑅 (𝑞) = ℓ𝑅 (𝑅/𝔪 [𝑞 ]) = dim𝜅 𝑅/𝔪 [𝑞 ] =

∑̄︁
𝛾

𝜇𝑅 (𝐶𝛾) 𝜈𝛾 (𝑞).

Moreover since 𝜇𝑅 (𝐶𝛾) is a constant independent from 𝑞, it is clear that Φ𝑅 (𝑞) has
all the properties enjoyed by 𝜈𝛾 (𝑞) in Theorem 3.12, namely, Φ𝑅 (𝑞) is a quasipoly-
nomial and that its leading and the second coefficients are both constants. �

We will return to (29) after the discussion of Ehrhart Theory in Sect. 4 (see
Remark 4.4).
The next example describes the BG decomposition of the semigroup generating

the rational normal cone of degree 2. This is a special case of Example 5.1 with
𝑔 = 2.

Example 3.14 Let 𝑅 = 𝑘 [𝑠, 𝑠𝑡, 𝑠𝑡2] where 𝑀 is the semigroup in Z2 generated by
(1, 0), (1, 1), (1, 2). Then 𝜎 is the linear map 𝜎 = (𝑑2, 2𝑑1 − 𝑑2) : 𝑀 → Z2. Note
that in this case, 𝑀 generates a simplicial cone in R2. The slanted grids in Fig. 1
below show the decomposition Γ of R2. Full dimensional cells that are equivalent
in Γ are labeled by © and 4 respectively just to show a few examples. Note that
there are two distinct classes. We also show the graph of a single open cell 𝛾 and its
closure d𝛾e.
Let P = {𝑥 ∈ R≥0𝑀 |𝑥 ∉ d + R≥0𝑀 for any nonzero d ∈ 𝑀}. Then P can be

tessellated by finitely many full-dimensional cells. Each non-equivalent cell may
occur in a different number of copies. (See Fig. 2.) For some 𝛾, P may contain its
entire closure but not always. Such decomposition is unique in the sense that each
full dimensional cell in Γ̄ is identified with a unique conic ideal class. The closure
of these semi-open rational polycells d𝛾e are convex.
Wewrite 𝛾1 for a cell labeled by© and 𝛾2 for one labeled by 4. By Theorem 3.13,

𝜑𝑅 (𝑒) = 𝜇𝑅 (𝐶𝛾1 ) 𝜈𝛾1 (𝑝𝑒) + 𝜇𝑅 (𝐶𝛾2 ) 𝜈𝛾2 (𝑝𝑒).
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(a) Γ and Γ

(b) Open cell 𝛾
(enlarged)

(c) Closure d𝛾e
(enlarged)

Fig. 1: Γ and the equivalence classes in Γ.

Fig. 2: P by Γ

Next we determine the values for 𝜇𝑅 (𝐶𝛾1 ) and 𝜇𝑅 (𝐶𝛾2 ) which are independent from
𝑒. In fact, since 𝐶𝛾 is a class defined by 𝐼𝑐 for some 𝑐 ∈ d𝛾e, to obtain the value
for 𝜇𝑅 (𝐶𝛾), it suffices to consider the minimal number of generators of a divisorial
ideal 𝐼𝑐 . Let 𝑐 = (− 23 ,−

2
3 ) ∈ d𝛾1e, then 𝐼𝑐 � 𝐶 (−𝑐) � 𝑅 · 𝑠𝑡 and 𝜇𝑅 (𝐶𝛾1 ) = 1. And

if 𝑐 = (0,− 13 ) ∈ d𝛾2e, then 𝐼𝑐 � 𝐶 (−𝑐) � 𝑅 · 𝑠𝑡 + 𝑅 · 𝑠𝑡2 and 𝜇𝑅 (𝐶𝛾1 ) = 2.

In Sect. 4, we will see that the Hilbert-Kunz function of an affine semigroup ring
𝑅 is equivalent to an Ehrhart function which counts the number of lattice points
in a certain dilated rational polycell P arising from 𝑅 which is nonconvex and not
necessarily closed. We will discuss 𝜑𝑅 (𝑒) from this aspect there. On the other hand,
when it comes to counting lattice points in a polycell (or a polytyope), there is no
previously known canonical method about dissecting the polycell (resp. polytope)
before proceeding to count. Via conic divisor classes, Bruns [16] decomposes P into
finitely many cells and each appears finitely many times. The BG decomposition is
unique for any given affine semigroup. The periodic behavior of the Hilbert-Kunz
function is mainly due to the fact that the vertices of full-dimensional open cells
𝛾 have rational coordinates. Even though the polycell P is not convex, the full-
dimensional cells in the BG decomposition are always convex. These facts can be
very useful.
In order to fully express 𝜑𝑅 (𝑒) using BG decompositions, it is equally important

to know 𝜇(𝐶𝛾) for each 𝛾 in Γ̄ (see Remark 33 and Question 5.9). The significance
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of 𝜇(𝐶𝛾) can also be seen in [17] in which Bruns and Gubeladze use it to measure
the number of Cohen-Macaulay divisor classes and prove that there are only finitely
many such divisor classes.
Finally we make a remark on the divisor class group.

Remark 3.15 We have seen that the divisor class group appears often in these
techniques. First it is used in proving the existence of 𝛽 in Subsect. 3.2. Then we
see that the representation of the divisor classes play the most crucial role in the
discussion of the periodic behaviors in the current subsection. The divisor classes also
occur implicitly in Subsect. 3.3, because the divisor class group is generated by the
twists of the structure sheaves which are the main object dealt with in Theorem 3.8.
So perhaps some level of finiteness condition on the divisor class group is responsible
for the (periodic) behavior of the function. This remains to be investigated.

3.6 Via Combinatorics

A lot of attention has been given to quotients of polynomial rings by monomial or
binomial ideals. In this subsection, we give a very brief account in this direction
without developing their details. These can be traced back to Conca [30] who con-
sidered generalized Hilbert-Kunz functions and utilized Gröbner basis to calculate
the multiplicity of binomial hypersurfaces. Watanabe [113], followed by Eto [39],
approximated the multiplicity by the volume of the relevant polytope. (Our discus-
sions on affine semigroup ring settings were initially inspired by [113].) Eto and
Yoshida [40] expressed the multiplicity in terms of the Stirling numbers.
Combining the techniques of Segre products as done in [40] and Gröbner bases,

Miller and Swanson [70] compute the Hilbert-Kunz function of the rings of the form
of 𝑅 = 𝜅 [𝑋]/𝐼2 (𝑋) where 𝑋 is an 𝑚 × 𝑛 matrix of indeterminates, 𝜅 [𝑋] is the
polynomial ring joining all indeterminates in 𝑋 , and 𝐼2 (𝑋) is the ideal generated by
all the 2 × 2 minors of 𝑋 . In [70], it is proved that the Hilbert-Kunz functions, for
arbitrary 𝑚 and 𝑛, are true polynomials and are expressed in a recursive manner, but
a closed form is provided only for the special case 𝑚 = 2. This study is extended
by Robinson and Swanson [89] who give explicit closed polynomial forms for all
positive integers 𝑚 and 𝑛.
Before ending this subsection, we mention an interesting article by Batsukh and

Brenner [5] in which the notion of binoid is introduced as a commutative monoid
with an absorbing element ∞. For rings of combinatorial natures such as Stanley-
Reisner and toric rings and those just described above, several questions arise. These
include the rationality of multiplicity, the interpretation of the notions in the case
of characteristic 0, and the dependence of the results on the characteristic. Batsuhk
and Brenner propose a unifying method evolved around binoids to answer all these
questions simultaneously. It will be interesting to further investigate if this new
approach may be applied to obtain or approximate Hilbert-Kunz functions.
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4 Normal Affine Semigroup Rings and Ehrhart Theory

In this section, we describe the generalized Ehrhart function and relate it to the
Hilbert-Kunz function of an affine semigroup ring.Below,we give a precise definition
of affine semigroup rings focusing on identifying monoid elements with monomials
of a Laurent polynomial ring. In this way, affine semigroup rings under consideration
in Subsect. 3.5 are naturally subrings of polynomial rings. Furthermore, it can be
understood as the coordinate ring of an affine toric variety.
A monoid in Z𝑑 is a semigroup that contains an identity element. Let 𝑀 denote

a monoid that can be generated by finitely many elements in Z𝑑 . We call such 𝑀 an
affine semigroup. An affine semigroup𝑀 is positive if𝑀∩−𝑀 = 0; namely, the only
invertible element in 𝑀 is the identity element. Let Q≥0𝑀 denote the rational cone
generated by𝑀 . Saying an affine semigroup is positive is equivalent to saying that its
rational cone is strongly convex or pointed. For the discussions within this paper, an
affine semigroup always stands for a monoid that is finitely generated and positive.
Let Z𝑀 denote the subgroup of Z𝑑 generated by 𝑀 . Obviously 𝑀 ⊆ Z𝑀 ∩ Q≥0𝑀 .
An affine semigroup 𝑀 is normal if equality holds, that is, for any ℎ ∈ Z𝑀 , we have
ℎ ∈ 𝑀 whenever 𝑛ℎ ∈ 𝑀 for some positive integer 𝑛. Pictorially,𝑀 is normal means
that there is no “hole" when comparing 𝑀 against Z𝑀 ∩ Q≥0𝑀 . We will assume
that 𝑀 is normal in this section although some of the results might be true in more
general settings.
Let 𝜅 be an algebraically closed field of any characteristic. We write 𝜅 [𝑀] for

the affine semigroup ring generated by 𝑀 over 𝜅. By identifying (𝑖1, . . . , 𝑖𝑑) ∈ Z𝑑
with 𝑡𝑖11 · · · 𝑡𝑖𝑑

𝑑
, we regard 𝜅 [𝑀] as a 𝜅-subalgebra in the Laurent polynomial ring 𝑆 =

𝜅 [𝑡1, . . . , 𝑡𝑑 , 𝑡−11 , . . . , 𝑡
−1
𝑑
]. For the purpose of our discussion, it is more convenient to

work with affine semigroup rings under such identification. However, for notational
simplicity, we still write 𝜅 [𝑀] in place of the formal 𝜅 [t𝑀 ]. It is known that 𝜅 [𝑀]
is a normal ring if and only if the semigroup 𝑀 is normal ([51]). Without loss of
generality, we also assume that Z𝑀 has rank 𝑑 (otherwise, replace 𝑑 by the rank of
Z𝑀), and that Z𝑀 equals the ambient group Z𝑑 . Thus dim 𝜅 [𝑀] = 𝑑.
Let 𝑅 = 𝜅 [𝑀] be an affine semigroup ring as described above. Then 𝑅 can be

viewed as a 𝑘-algebra generated by finitely manymonomials in a Laurent polynomial
ring 𝑆. Clearly 𝑅 is an integral domain. Sometimes 𝑅 is also called a toric ring, since
it is the coordinate ring of an affine toric variety that is constructed from lattice
points in 𝑀 (c.f. [32, 42, 69]). For instance, a convex polyhedral cone 𝜎 ⊂ (R𝑑)∨
defines an affine toric variety 𝑋 = Spec 𝑅 where 𝑅 = 𝜅 [𝜎∨∩Z𝑑]. In this convention,
𝜎∨ = R≥0𝑀 is an extended cone of the rational cone Q≥0𝑀 . It can be proved that
𝑅 is isomorphic to the quotient of a polynomial modulo a prime ideal generated by
binomials. Conversely a prime ideal generated by binomials always defines a toric
ring and thus a semigroup ring (c.f. [32, Chap. 1]).
Affine semigroup rings have all the above classical interpretations making them

an interesting family of rings to study for any topic in both algebra and geometry.
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Next, after a brief introduction of Ehrhart theory, we will see how the polytopes and
their enclosed lattice points interact with ideals of finite colength.
An Ehrhart function concerns the number of lattice points contained in a dilated

polytope. A polytope, denoted by Δ, is the convex hull of finitely many points in
R𝑁 . Precisely, for a given finite set of points {v0, . . . , v𝑔} ⊂ R𝑁 , the convex hull of
v0, . . . , v𝑔 is given by Δ = {𝜆0v0 + · · · + 𝜆𝑔v𝑟 |0 ≤ 𝜆𝑖 ≤ 1, 𝜆0 + · · · 𝜆𝑔 = 1} ⊂ R𝑁 .
The dimension of Δ is equal to dimR Span{v1−v0, . . . , vg−v0}. A 𝑑-polytope refers
to a 𝑑-dimensional polytope. And 𝑛Δ denotes the convex hull of {𝑛v0, . . . , 𝑛v𝑔};
that is also a dilation of Δ. The lattice-point enumerator (c.f. [6, p.27]) for the 𝑛-th
dilation of Δ is defined to be

𝐸Δ (𝑛) = #
(
𝑛Δ ∩ Z𝑁

)
.

We say that Δ is an integral polytope if all its vertices have integer coordinates and it
is a rational polytope if its vertices have rational coordinates. The following theorem
can be found in [6, Theorems 3.8 and 5.6].

Theorem 4.1 (Ehrhart [36]) Let Δ be an integral 𝑑-polytope in Z𝑁 and 𝑛 be a
positive integer.

(a) 𝐸Δ (𝑛) is a polynomial function in 𝑛 of degree 𝑑.
(b) If we write 𝐸Δ (𝑛) = 𝑎𝑑𝑛𝑑 + 𝑎𝑑−1𝑛𝑑−1 + · · · + 𝑎0, then

𝑎𝑑 = the volume of the polytope Δ,

𝑎𝑑−1 =
1
2
· 𝐸 (𝜕(𝑛·Δ)∩Z𝑁 ) (𝑛),

𝑎0 = the Euler characteristic of Δ,

where 𝜕 indicates the boundary of the polytope.

Whether or not other coefficients carry any significant information is unknown.
Ehrhart’s Theorem can be generalized to rational polytopes. A function 𝑓 (𝑛) on

Z or Z≥0 is called a quasipolynomial of period 𝑟 if it can be written in polynomial
form in 𝑛 whose coefficients are periodic functions in 𝑛 with 𝑟 as the least common
multiple of their periodic lengths. Equivalently, there exist 𝑟 polynomials 𝑓1, . . . , 𝑓𝑟
such that 𝑓 (𝑛) = 𝑓𝑖 (𝑛) if 𝑛 ≡ 𝑖 (mod 𝑟).

Theorem 4.2 (Generalized Ehrhart’s Theorem [36]) Assume that Δ is a convex
rational 𝑑-polytope. Then 𝐸Δ (𝑛) is a quasipolynomial in 𝑛 of degree 𝑑. Moreover,
the period divides the least common multiple of the denominators of the coordinates
of the vertices of Δ.

Naturally, 𝐸Δ (𝑛) is called the Ehrhart polynomial or quasipolynomial according
to whether Δ is an integral or rational polytope.
The proof of Theorem 4.2 follows very similarly to that of Theorem 4.1, but as

pointed out in Beck and Robin [6], “the arithmetic structures of Ehrhart quasipoly-
nomials is much more subtle and less well known than that of Ehrhart polynomials”.
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A detailed proof following the instructions of [6, Section 3.7] is documented in
Barco [4]. (See Sam [91] for an alternative approach.)
Note that for any polytope Δ, all the faces in its boundary 𝜕Δ must be convex.

Let Δ◦ = Δ − 𝜕Δ be the interior of Δ. By the inclusion and exclusion principle
and applying Theorem 4.1 repeatedly, one can prove that Ehrhart’s Theorem holds
for Δ◦ with 𝐸Δ◦ (𝑛) defined analogously, and also for non-convex polytopes and
their interiors as well. Similarly, Theorem 4.2 which concerns rational polytopes
holds for the boundary 𝜕Δ, interior Δ◦ and their non-covex counterparts (c.f. [102,
Section 4.6.2]).
For the following discussion, we define a polycell to be a union of finitely many

polytopes, but not necessarily containing all the faces on the boundary of the union.
We also require that if any two polytopes intersect, they do so only at their faces.
Thus, a polycell is not necessarily convex; neither is it closed nor open. We use the
term a semi-open polycell to emphasize that it contains only part of its boundary. The
Ehrhart Theorem and its generalized version both hold for the semi-open polycells
by the inclusion and exclusion principle.
Next we relate the counting of lattice points to 𝜑𝑅 (𝑒). We begin by doing so to

Hilbert-Samuel functions. We use ∠ as a shorthand for the cone R≥0𝑀 in R𝑑 . Let 𝔞
be an ideal generated by monomials in 𝑅 = 𝜅 [𝑀] such that 𝑅/𝔞 has finite length.
The Hilbert-Samuel function 𝔥(𝑛) = ℓ(𝑅/𝔞𝑛) can be obtained by counting the lattice
points in the complement of the union of the shifted cones 𝐿𝑛 =

⋃(d + ∠), where
the union runs over the d’s corresponding to the generators td of 𝔞𝑛. Since ℓ(𝑅/𝔞𝑛)
is finite, ∠ \𝐿𝑛 is a bounded semi-open region. Hence there are only finitely many
lattice points in ∠ \𝐿𝑛. Furthermore, as the number of generators of 𝔞𝑛 increases as
the power 𝑛 increases, so does the number of vertices of 𝐿𝑛. Now let 𝐿 be the convex
hull containing all the 1

𝑛
𝐿𝑛 :=

⋃( 1
𝑛
d + ∠) for 𝑛 ≥ 1. One sees that 𝔥(𝑛) is equal

to the number of points in (∠ \ 1
𝑛
𝐿𝑛) ∩ 1

𝑛
Z𝑑 and a lattice cube in 1

𝑛
Z𝑑 has volume

exactly 1
𝑛𝑑
. Thus multiplying 1

𝑛𝑑
to 𝔥(𝑛) gives the Riemann sum that approximates

the volume of ∠ \𝐿 so that when 𝑛 → ∞, the quantity 𝔥(𝑛)
𝑛𝑑
converges to the volume

of ∠ \𝐿. Hence the Hilbert-Samuel multiplicity 𝑖(𝑅, 𝔞) of 𝑅 with respect to 𝔞 can be
computed using the following volume formula (c.f. [87, Exercise 2.8])

𝑖(𝑅, 𝔞) = 𝑑! lim
𝑛→∞

𝔥(𝑛)
𝑛𝑑

= 𝑑!V𝑜𝑙 (∠ \𝐿). (30)

Now we assume that char 𝜅 = 𝑝 > 0 and consider the Frobenius powers of the
maximal ideal 𝔪 consisting of all monomials in 𝑅 other than 1. (Similar consid-
erations apply to arbitrary ideals of finite colength.) Suppose 𝔪 is generated by
td1 , . . . , tdℎ . Then𝔪 [𝑝𝑒 ] is generated by (td1 ) 𝑝𝑒 , . . . , (tdℎ ) 𝑝𝑒 . Let 𝐿 =

⋃ℎ
𝑗=1 (d 𝑗 + ∠)

be the union of ℎ polyhedral cones. Then

ℓ(𝑅/𝔪 [𝑝𝑒 ]) = dim𝜅 𝑅/𝔪 [𝑝𝑒 ] = #
(
𝑝𝑒 · (∠ \𝐿)

⋂
Z𝑑

)
.

This gives the Hilbert-Kunz function a combinatorial interpretation. More precisely,
if we let P = ∠\𝐿. Then P is a semi-open polycell that does not contain its “upper
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right" boundary faces. In particular,P is not necessarily (in fact, almost never) convex
and 𝑝𝑒 · P ∩ Z𝑑 consists of all the monomials in 𝑅 not in 𝔪 [𝑝𝑒 ] . The monomials
that generate 𝑅/𝔪 [𝑝𝑒 ] as a 𝜅 vector space are exactly those whose exponents are
contained in 𝑝𝑒 ·P, the polycellP dilated by 𝑝𝑒. Hence the values of theHilbert-Kunz
function at 𝑒 is

𝜑𝑅 (𝑒) = dim𝑘 𝑅/𝔪 [𝑝𝑒 ] = #(𝑝𝑒 · P ∩ Z𝑑). (31)

To illustrate the ideas above, we use 𝑅 = 𝑘 [𝑠, 𝑠𝑡, 𝑠𝑡2] from Example 3.14. Then
𝜑𝑅 (𝑒) = ℓ(𝑅/𝔪 [𝑝𝑒 ]) can be obtained by counting the number of lattice points
belonging to the 𝑝𝑒-dilated semi-open polycell as shown in Fig. 3 below.

(a) 𝑝 = 3, 𝑒 = 1 (b) 𝑝 = 3, 𝑒 = 2

Fig. 3: 𝑝𝑒 · P ∩ Z2 (The labels will be needed in Example 5.1.)

A complete computation of the Hilbert-Kunz function of this example will be
presented in Example 5.1.
In general, it is not difficult to see that

#
(
𝑝𝑒 · P ∩ Z𝑑

)
= #

(
P ∩ 1

𝑝𝑒
· Z𝑑

)
. (32)

Hence similarly to the Hilbert-Samuel multiplicity, one can argue that the limit of
𝜑𝑅 (𝑒) divided by (𝑝𝑒)𝑑 tends to the volume of P. This is a geometric illustration
of howWatanabe [113] proved the rationality of Hilbert-Kunz multiplicity for affine
semigroup rings, although his proof does not involve Ehrhart theory.
It is important to note that the coordinates of the vertices of P are not necessarily

all integers. Therefore as 𝑒 varies, we are examining about the values of gener-
alized Ehrhart functions which are eventually periodic with predictable period by
Theorem 4.2. (See Remark 5.3(a) for comments on periods.)
Next we reflect on the discussion above on Ehrhart theory, Hilbert-Samuel and

Hilbert-Kunz functions. The value 𝔥(𝑛) of the Hilbert-Samuel function is the number
of lattice points in ∠\𝐿𝑛. Recall that 𝐿𝑛 =

⋃(d + ∠) where the union runs over the
monomial generators td of 𝔞𝑛. The vertices of ∠\𝐿𝑛 are integral but its shape changes
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as 𝑛 increases due to the increasing number of generators. This prevents us from
taking the advantage of the Ehrhart’s Theorem. On the other hand, when working
with the Frobenius powers of 𝔪, the shape of 𝑝𝑒 · P remains rigid and is always
similar to P. Each value of the Hilbert-Kunz function 𝜑𝑅 (𝑒) is thus exactly the value
provided by the Ehrhart function 𝐸P (𝑝𝑒) for the 𝑝𝑒-th dilation of P. This allows
us to apply the generalized Ehrhart’s Theorem 4.2 for the rational polycell to its full
potential. Hence

𝜑𝑅 (𝑒) = 𝐸P (𝑝𝑒), or equivalently, Φ𝑅 (𝑞) = 𝐸P (𝑞).

We then conclude that Φ𝑅 (𝑞) is a quasipolynomial in 𝑞 and its value is given by the
lattice points in a dilated polycell.
We now return to the BG decomposition. We see from (32) that to compute

𝐸P (𝑝𝑒), one may restrict the BG decomposition Γ to P and decompose P into a
union of convex polycells. In this way, Bruns refined the generalized Ehrhart theorem
in the case of affine semigroup rings and proved that the second coefficient is also a
constant.
In summary, the discussions above lead to the following identity for 𝑒 � 1∑̄︁

𝛾

𝜇𝑅 (𝛾)𝜈𝐶𝛾
(𝑞) = 𝐸P (𝑞) (33)

where the sum runs over the full-dimensional cells in Γ̄. More precisely, (33) gives us
two equivalent expressions forΦ𝑅 (𝑞). As a corollary to Theorem 3.13, Theorem 4.3
below refines Theorem 4.2 by identifying that the second coefficient is always a
constant for the case of normal affine semigroup rings.

Theorem 4.3 (Bruns [16]) The Hilbert-Kunz function of 𝑅 with respect to 𝔪 is a
quasi-polynomial. Precisely it has the form

Φ𝑅 (𝑞) = V𝑜𝑙 (P)𝑞𝑑 + 𝛽𝑞𝑑−1 + (a quasipolynomial in lower degrees),

where 𝛽 is a constant, and V𝑜𝑙 (P) denotes the volume of the polycell P determined
by the shape of 𝑀 in Z𝑑 .

Roughly speaking, byTheorem3.13, the leading coefficient is 𝑒𝐻𝐾 =
∑
𝐶𝛾
𝜇𝑅 (𝛾)·

V𝑜𝑙 (𝐶𝛾) = V𝑜𝑙 (P), and the second coefficient 𝛽 =
∑
�̄�∈Γ̄ 𝜇𝑅 (𝛾) · 𝑏𝛾 is a constant

as expected where 𝑏𝛾 is the second coefficient in 𝜈𝛾 (𝑛).
We now elaborate on the content of (33). First recall the ring 𝑅 = 𝜅 [𝑠, 𝑠𝑡, 𝑠𝑡2]

from Example 3.14 and the BG decomposition of the polycell P with labeled cells
in Fig. 4.
Thus (33) shows that

𝐸P (𝑝𝑒) = 𝜑𝑅 (𝑒) = 𝜇𝑅 (𝐶𝛾1 ) 𝜈𝛾1 (𝑝𝑒) + 𝜇𝑅 (𝐶𝛾1 ) 𝜈𝛾1 (𝑝𝑒) = 𝜈𝛾1 (𝑝𝑒) + 2 𝜈𝛾1 (𝑝𝑒)
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Fig. 4: P by Γ with labeled cells

where 𝛾1 is equivalent to the cell labeled by © that occurs once and 𝛾2 by 4 that
occurs twice. Moreover, each 𝜈𝛾𝑖 (𝑝𝑒) = 𝐸 d𝛾𝑖 e (𝑝𝑒) is an Ehrhart quasipolynomial of
d𝛾𝑖e.
The following remarks point out some subtleties in (33).

Remark 4.4 (𝑎) Despite the fact that 𝜈𝛾 (𝑞) = 𝐸 d𝛾e (𝑞), a general one-to-one cor-
respondence between the set of points counted by the left hand side in (33) and
the actual lattice points in P, counted by 𝐸P (𝑞), is not immediately obvious for
arbitrary P. One can carefully match them in the above Example 3.14. Those in the
interiors (of 𝛾𝑖) are trivial, but the correspondence at the boundaries is much more
subtle, especially in higher dimensions. This is the place where the BG decomposi-
tion lends us power, by relating the lattice points to those enclosed by the closure of
the full-dimensional cells without doing the actual correspondence.
(𝑏) Since P is tessellated by the full-dimensional equivalence classes �̄�, (33) sug-
gests that the minimal generators 𝜇𝑅 (𝐶𝛾) can be obtained by the number of times
that �̄� appears in P. This is clear in Example 3.14 (see Fig. 4), but full generality
would probably require some careful consideration.

We end the section by summarizing several families of rings whose Hilbert-Kunz
function enjoys the following functional form with constants 𝛼 and 𝛽,

Φ𝑅 (𝑞) = 𝛼𝑞𝑑 + 𝛽𝑞𝑑−1 + 𝛾(𝑞).

(1) 𝑅 is an excellent normal local domain or an excellent local ring satisfying (R1′).
In this case, 𝛾(𝑞) = 𝑂 (𝑞𝑑−2). (See Subsect. 3.2.)

(2) 𝑅 is a two-dimensional normal domain that is a standard graded algebra over
an algebraically closed field 𝜅. Indeed, 𝛽 = 0 in this case. Moveover, 𝛾(𝑞) is
a bounded function in general, and is eventually periodic if 𝜅 is the algebraic
closure of a finite field. (See Subsect. 3.3.)

(3) 𝑅 is a normal affine semigroup ring. Then, 𝛾(𝑞) is eventually a quasipolynomial.
(See Theorem 4.3.)

(4) 𝑅 = 𝜅 [𝑋]/𝐼2 (𝑋) where 𝐼2 (𝑋) is the ideal generated by all 2 × 2 minors of the
𝑚 × 𝑛 matrix 𝑋 of indeterminates. In this case, Φ𝑅 (𝑞) is a polynomial. (See
Subsect. 3.6.)
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5 Examples in Normal Affine Semigroup Rings

In this section, we present several examples where the Hilbert-Kunz functions are
obtained as generalized Erhart quasipolynomials by counting the lattice points inside
the semi-open rational polycell P as described in Sect. 4. First we count the points
for the family of rational normal cones of arbitrary degree in the most intuitive way.
Then we use another 2-dimensional example to illustrate a Macaulay2 simulation.
We also present some results and discussions on the homogeneous coordinate ring
of Hirzebruch surfaces and its relative variations. The calculations presented here
are not performed with BG decompositions. However, we provide some comments
for those who are interested in pursuing this direction. Throughout the section, we
assume 𝑒 ≥ 1.

Example 5.1 Consider 𝐶𝑔 = Spec 𝑅𝑔 ⊂ C𝑔+1, the rational normal cone of degree 𝑔
in characteristic 𝑝: 𝑅𝑔 = 𝑘 [𝑠, 𝑠𝑡, · · · , 𝑠𝑡𝑔] or 𝑘 [𝑥0, · · · , 𝑥𝑔]/𝐽 where 𝐽 denotes the

ideal generated by the maximal minors of the matrix
(
𝑥0 𝑥1 · · · 𝑥𝑔−1
𝑥1 𝑥2 · · · 𝑥𝑔

)
. The graph in

the previous Fig. 3 illustrates 𝐶2. The Hilbert-Kunz function of 𝑅𝑔 with respect to
the maximal graded ideal is

𝜑𝑅𝑔
(𝑒) = ( 𝑔 + 1

2
) (𝑝𝑒)2 + 1

2
(−𝑣2𝑒 + 𝑣𝑒𝑔 − 𝑔 + 1)

where 𝑣𝑒 ∈ {0, . . . , 𝑔 − 1} is the congruence class of 𝑝𝑒 − 1 modulo 𝑔.
We present a computation by an elementary approach. Observe Fig. 3(b) for

𝑒 = 2. The number of the lattice points in 𝑝2 · P ∩ Z2 can be obtained by counting
those in 4𝑂𝑇𝑉 without the right vertical boundary and the smaller regions 4𝑇𝑈𝑊 ,
4𝑈𝑉𝑄 without the upper and right boundaries. For arbitrary 𝑔, there will be exactly
𝑔 identical smaller triangular shapes. The count in 4𝑂𝑇𝑉 , denoted 𝐴𝑒, is given by

𝐴𝑒 = 1 + (1 + 𝑔) + (1 + 2𝑔) + · · · + (1 + (𝑝𝑒 − 1)𝑔)
= 𝑝𝑒 + 𝑔 [1 + 2 + · · · + (𝑝𝑒 − 1)]
=
𝑔

2 (𝑝
𝑒)2 + (1 − 𝑔

2 ) (𝑝
𝑒).

The number of the lattice points contained in the identical smaller triangles 4𝑇𝑈𝑊
and 4𝑈𝑉𝑄, denoted 𝐵𝑒, is

𝐵𝑒 = (𝑝𝑒 − 1) + (𝑝𝑒 − 1 − 𝑔) + (𝑝𝑒 − 1 − 2𝑔) + · · · + (𝑝𝑒 − 1 − 𝑢𝑔),

where 𝑢 is a non-negative integer such that 𝑝𝑒 − 1 = 𝑢𝑔 + 𝑣𝑒 with 𝑣𝑒 as described
above. After replacing 𝑢 by (𝑝𝑒 − 1 − 𝑣𝑒)/𝑔, 𝐵𝑒 is simplified to be

𝐵𝑒 = (𝑢 + 1) (𝑝𝑒 − 1) − 𝑔 · (1+𝑢)𝑢
2

= 1
2𝑔 (𝑝

𝑒)2 + ( 12 −
1
𝑔
) (𝑝𝑒) − 1

2𝑔 (𝑣
2
𝑒 − 𝑣𝑒𝑔 + 𝑔 − 1).

Thus the Hilbert-Kunz function of 𝑅𝑔 can be expressed as
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𝜑𝑅 (𝑒) = 𝐴𝑒 + 𝑔 · 𝐵𝑒
=
𝑔

2 (𝑝
𝑒)2 + (1 − 𝑔

2 ) (𝑝
𝑒) + 𝑔[ 12𝑔 (𝑝

𝑒)2 + ( 12 −
1
𝑔
) (𝑝𝑒) − 1

2𝑔 (𝑣
2
𝑒 − 𝑣𝑒𝑔 + 𝑔 − 1)]

=
1+𝑔
2 (𝑝𝑒)2 + 0 · (𝑝𝑒) − 1

2 (𝑣
2
𝑒 − 𝑣𝑒𝑔 + 𝑔 − 1)

with 𝑣𝑒 ≡ 𝑝𝑒 − 1 (mod 𝑔) as described.

It is a good exercise to carry out the computation for 𝜑𝑅𝑔
(𝑒) by the BG decom-

position. There will be 𝑔 non-isomorphic conic divisors and each corresponds to a
2-dimensional semiopen polycell 𝛾. In fact, all of them are parallelograms of the
same shape and size, and for each 𝑖 = 1, . . . , 𝑔, there exists exactly one cell that
appears 𝑖 times in P. However, since the polytopes are rational, polycells presenting
non-isomorphic conic divisors do not necessarily have the same Ehrhart quasipoly-
nomials. This adds complications but interesting twists to this exercise which leads
to a better understanding of BG decompositions and Ehrhart quasipolynomials.

Example 5.2 𝑅 = 𝜅 [𝑠2𝑡, 𝑠𝑡, 𝑠𝑡2] with char 𝜅 = 𝑝. In this example, we describe an
interpolation process using the values of 𝜑𝑅 (𝑒) provided by Macaulay2. In this
example for 𝑝 = 2 and 𝑒 = 1, we use the following code:

p=2
k=ZZ/p
T=k[s,t]
S=k[x,y,z]
f=map(T, R, {s^2*t, s*t, s*t^2})
J=ker f
R=S/J
e=1
q=p^e
Ie=ideal(x^q, y^q, z^q)
degree(R/Ie)
toRR(200, oo/4^e)

The second to last command produces the values of 𝜑𝑅 (𝑒) while the last command
toRR(200, oo/4ˆe) divides the value by (2𝑒)2 and converts it to the precision of
200 decimals. By Theorem 4.3, we know that 𝜑𝑅 (𝑒) must be in the form of

𝜑𝑅 (𝑒) = a (2𝑒)2 + b (2𝑒) + 𝑐𝑒

with rational constants a and b, and eventually periodic function 𝑐𝑒. Thus the se-
quence of outputs obtained by iterating the codes above with increasing 𝑒 must
converge to the desired leading coefficient a. Since a is a rational number, the se-
quence will eventually stabilize with apparent repeating decimals and one can guess
an expression for a as a quotient of two integers.
Once the precise value a is available, we can calculate b by iterating similar

Macaulay2 codes with the last two input commands changed to

degree(R/Ie) - a * q^2
toRR(200, oo/2^e)
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We do so until the sequence of outputs stabilizes with apparent repeating decimals.
Then do the simple computation to obtain b in the form of a rational number. For the
final term, do the Macaulay2 iterations with the last two input commands changed
to

degree(R/Ie) - a * q^2 - b * q
toRR(200, oo)

In this step, the data may form multiple groups and each group will converge to a
rational number. In higher dimensional cases, we expect such a property will hold
for the coefficients corresponding to terms of degree equal to dim 𝑅 − 2. But for the
remaining terms, the trend of the data might not be so clear.
We perform this interpolation for small primes 𝑝 = 2, 3, 5, 7, 11. The numerical

outputs suggest the following results

Φ𝑅 (𝑞) =
5
3
𝑞2 − 2

3
, if 𝑝 ≠ 3; and Φ𝑅 (𝑞) =

5
3
𝑞2, if 𝑝 = 3. (34)

By doing the lattice point count as done inExample 5.1, one can show that theHilbert-
Kunz functions of 𝑅 for arbitrary primes are indeed given by (34) as suggested by
Macaulay2. TheBGdecomposition can be performed in a similarway as commented
in Example 5.1. We leave these exercises to the interested readers.

We make two remarks regarding the above two examples.

Remark 5.3 (𝑎) In Example 5.1, Φ𝑅𝑔
(𝑞) (i.e., 𝜑𝑅𝑔

(𝑒)) is a polynomial in 𝑞 (resp.
𝑝𝑒) if and only if the class of 𝑝𝑒 − 1 modulo 𝑔 is independent of 𝑒. For instance,
𝑔 |𝑝 − 1 or 𝑔 = 𝑝. In Example 5.2,Φ𝑅 (𝑞) is a polynomial for any given prime 𝑝 even
though the vertices of the polycell P defined in Sect. 4 are obviously rational, but
not integral in this example.
By the generalizedEhrhart Theorem4.2, the period of anEhrhart quasipolynomial

𝐸P (𝑛) divides the least common multiple of the denominators of the vertices. Since
Hilbert-Kunz function is specialized only at the powers of a prime 𝑝, the period may
be smaller or even 1, but does not necessarily divide the least common multiple.
These are clearly displayed in the previous two examples and the next one. For
instance, in Example 5.1, taking 𝑝 = 3 and 𝑔 = 5, then the least common multiple
of the vertices is 5 but the period of the Hilbert-Kunz function is 4.

(𝑏) In both Examples 5.1 and 5.2, the second coefficient 𝛽 vanishes. This is not
a coincidence because a simplicial cone defines a quotient singularity which can be
realized as a polynomial invariant of a finite group. Therefore, its divisor group is a
torsion group and hence 𝛽 = 0 (c.f. [59],[8],[42, 2.2],[66]).

Next, suggested by U. Walther, we consider the family of Hirzebruch surfaces
𝑋Σ𝑎
. Let 𝑃𝑎 be the integral polytope with vertices: (0, 0), (1, 0), (0, 1), (1, 𝑎 + 1)

in R2. A Hirzebruch surface is a toric variety constructed from the normal fan
Σ𝑎 associated to 𝑃𝑎. One can also view 𝑋Σ𝑎

as the Zariski closure of the set
{(1, 𝑠, 𝑡, 𝑠𝑡, . . . , 𝑠𝑡𝑎+1) | (𝑠, 𝑡) ∈ (C∗)2} in P𝑎+2. Notice that the powers of the mono-
mials in 𝑠, 𝑡 are exactly the lattice points in 𝑃𝑎 (c.f. [32, Example 2.3.16]). The ring
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𝑅 = 𝜅 [𝑀] in Example 5.4 is the coordinate ring of the affine cone of 𝑋Σ𝑎
with

𝑀 = {(1, v) |v ∈ 𝑃𝑎 ∩ Z2}.

Example 5.4 Set 𝜅 = Z/𝑝. Let 𝑆𝑎 be the affine semigroup ring arising from 𝑋Σ𝑎

𝑆𝑎 = 𝜅 [𝑢, 𝑢𝑠, 𝑢𝑡, 𝑢𝑠𝑡, 𝑢𝑠𝑡2, . . . , 𝑢𝑠𝑡𝑎+1] .

We compute the Hilbert-Kunz function of 𝑆𝑎 with respect to the maximal ideal
generated by all monomials other than 1. By performing the same calculations using
Macaulay2 as done in Example 5.2, the simulations suggest

(1) 𝑎 = 1,
if 𝑝 = 2, Φ𝑆1 (𝑞) = 7

4𝑞
3 − 1

8𝑞
2 − 1

4𝑞;
if 𝑝 ≥ 3, Φ𝑆1 (𝑞) = 7

4𝑞
3 − 1

8𝑞
2 − 1

4𝑞 −
3
8 .

(2) 𝑎 = 2,

if p=3, Φ𝑆2 (𝑞) = 20
9 𝑞
3 − 1

3𝑞
2;

if 𝑝 ≠ 3, Φ𝑆2 (𝑞) = 20
9 𝑞
3 − 1

3𝑞
2 +

{
− 49 , 𝑞 ≡ 2 (mod 3)
− 89 , 𝑞 ≡ 1 (mod 3) .

More cases are documented in Schalk [92]. The knowledge about the possible values
of the period from Theorem 4.2 is very helpful for the interpolation process of the
quasipolynomials. The vertices of the polycell within which we count the lattice
points must be the intersection of those parallel to any three support hyperplanes of
the affine cone of the semigroup generating 𝑅. By straightforward calculation, we
know that the least multiple of the denominator of these vertices is 𝑎 + 1. Thus the
period ofΦ𝑆𝑎 (𝑞) is bounded above by 𝑎 +1, although not necessarily dividing 𝑎 +1,
as indicated in Remark 5.3(a).

The Hilbert-Kunz function of Hirzebruch surfaces has also been considered via
the pair (𝑋,L) by Trivedi [106] using sheaf theoretic method where 𝑋 is regarded
as a nonsingular ruled space over P1 and L is an ample line bundle on 𝑋 . A closed
form of the Hilbert-Kunz function is given in terms of formulas in the data provided
by the ample line bundle L.
Saikali [90] considered a variation of 𝑆𝑎 where the semigroup ring is a 𝑘-algebra

generated by the monomials contained in the cone over the polytope 𝑃𝑏,ℎ with the
vertices (0, 0, 1), (𝑏, 0, 1), (0, ℎ, 1) and (𝑏 + ℎ, ℎ, 1). Setting 𝑏 = ℎ = 1 gives the
special case in Example 5.4 with 𝑎 = 1 up to an isomorphism, i.e., (𝑃𝑎, 1) = 𝑃𝑏,ℎ
when 𝑎 = 𝑏 = ℎ = 1. For 𝑆𝑎 in Example 5.4, all the nonzero lattice points are on the
boundary of (1, 𝑃𝑎) for any 𝑎 while 𝑃𝑏,ℎ has lattice points in the interior if ℎ > 1. So
the shape of the corresponding polycell P is a lot more complicated in [90] in which
the lattice points are counted by viewing P as the union of a large convex polytope
and multiple prickly smaller shapes similar to the way Example 5.1 is considered.
A closed form of the Hilbert-Kunz function is obtained by analyzing complicated
counting functions with the assistance of the 3D graphing software Geogebra.
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The BG decompositions for 𝑆𝑎 in Example 5.4 and for the variations in [90] are
much more subtle since these are nonsimplicial three-dimensional polycells and they
have not been explored in great detail.
We observe the following general facts. Let 𝑅 be a normal afffine semigroup ring

and 𝑅+ be the maximal ideal consisting of all the monomials other than 1.

Remark 5.5 The Hilbert-Kunz multiplicity of an affine semigroup ring, as it can be
expressed by the volume of P, is independent of the characteristic 𝑝. Obviously the
Hilbert-Kunz function is not. Not only does the shape of 𝜑𝑅 (𝑒) depend on 𝑝, but,
even in polynomial form, the function varies as 𝑝 does.
For a given 𝑆𝑎, if 𝑞 is constant modulo 𝑎 + 1, thenΦ𝑅 (𝑞) is in a polynomial form.

Otherwise, it is likely to be a quasipolynomial. This indicates that the construction of
a normal semigroup ring with a desired form of Hilbert-Kunz function is, in theory,
plausible. In practice though, in spite of Theorem 4.2 that identifies the possible
period of the Ehrhart quasipolynomial from the coordinates of the vertices, the exact
period is not immediately obvious (see references following Question 5.8).
Furthermore, since the Ehrhart quasipolynomial of a polytope with integral ver-

tices is a polynomial, it is possible to construct affine semigroup rings whose Hilbert-
Kunz functions are true polynomials. In fact, this happens if all the cells of Γ have
integral vertices. Bruns pointed out in [16, p. 71] that this is possible if the affine
semigroup 𝑀 has a unimodular configuration. As we can see from the examples
above, the integral condition on the full dimensional cells are not necessary for
Hilbert-Kunz functions to be of true polynomial forms. While the configuration of
semigroups are independent of the characteristic, the functional formofHilbert-Kunz
functions in general does depend on the characteristic.

Remark 5.6 The open cells in Γ of the BG decomposition determine the ultimate
shape of 𝜑𝑅 (𝑒). We say that a function 𝐹 (𝑒) is a polynomial up to a periodic function
if it is in the form of

𝐹 (𝑒) = 𝑎𝑑 (𝑝𝑒)𝑑 + · · · + 𝑎1 (𝑝𝑒) + 𝛿𝑒

where 𝑎𝑑 , . . . , 𝑎1 are constants and 𝛿𝑒 is a periodic function. All the functions
presented in this section are in such a form. Next we call 𝜑𝑅 (𝑒 + 1) − 𝜑𝑅 (𝑒) the
difference function of 𝜑𝑅 (𝑒). By a straightforward computation, we can show that if
the difference function is a polynomial up to a periodic function, then so is 𝜑𝑅 (𝑒).
This is supported by Saikali’s analysis in [90]. It is also related to the shape of
the full dimensional cells in the BG decomposition. Not all full-dimensional cells
have its Ehrhart quasipolynomial as a polynomial up to a periodic function. It is
reasonable to expect that the Hilbert-Kunz functions can be characterized by the BG
decomposition. In another words, we expect that the functional form of Hilbert-Kunz
function can be determined by the combinatorial structure of the affine semigroup
ring.

By studying the BG decompositions, one might be able to understand better the
periodic behavior of 𝜑𝑅 (𝑒) as pointed out in Remarks 5.5 and 5.6. In addition,
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we may challenge ourselves to find a geometric interpretation of the coefficients of
the lower degree terms, and search for useful ways to determine the period of the
quasipolynomial.
We end this paper with the following questions. An answer to Question 5.9 will

provide an effective algorithm of accessing the Hilbert-Kunz functions of normal
affine semigroup rings.

Question 5.7 As in Theorem 4.1 for the leading and the second coefficients, can one
give a meaningful geometric interpretation to the coefficient of each degree in the
polynomial form of 𝜑𝑅 (𝑒)?

Question 5.8 How can the period of 𝜑𝑅 (𝑒) be effectively and efficiently estimated?

An Ehrhart version of Question 5.8 is posted in Beck and Robins [6, 3.39]; see
also Woods [118], and Beck, Sam and Woods [7].
Let 𝑅 = 𝑘 [𝑀] be a normal affine semigroup ring in Subsect. 3.5. Note that the

BG decomposition is determined by the semigroup structure of 𝑀 .

Question 5.9 Can an effective algorithm be developed for the function 𝜈𝛾 (𝑛) and the
minimum generators 𝜇𝑅 (𝐶𝛾) for any full dimensional class 𝛾 in Γ? Furthermore,
does the semigroup structure of 𝑀 characterize the BG decomposition and vice
versa?

Counting lattice points inside a polytope, though a simple and rather primitive
task, is not as easy as it appears. The desire of understanding Hilbert-Kunz function
now leads us to ask for what class of polytope Δ can 𝐸Δ (𝑛) be explicitly calculated.
Starting from an affine semigroup and using the BG decomposition, it seems that
one may branch out into Hilbert-Kunz or Ehrhart theory. The results obtained from
either direction may very likely enhance each other.
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