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Abstract

The main purpose of this paper is to obtain the Hilbert–Samuel polynomial of a module via blowing up
and applying intersection theory rather than employing associated graded objects. The result comes in the
form of a concrete Riemann–Roch formula for the blow-up of a nonsingular affine scheme at its closed
point. To achieve this goal, we note that the blow-up sits naturally between two projective spaces, one over
a field and one a regular local ring, and then apply the Grothendieck–Riemann–Roch Theorem to each
containment.
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Introduction

The main purpose of this paper is to elicit multiplicity data on a nonsingular affine scheme by
means of a Riemann–Roch formula developed on the blow-up.
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The multiplicity, and indeed all the Hilbert–Samuel coefficients, of an ideal or module over
a local ring are traditionally detected by looking modulo the powers of the maximal ideal, that
is, by going to an associated graded object and examining its Hilbert function. In such a way
one is placed in the setting of projective varieties over a field, where the algebraic definitions
were developed by Samuel and others from the original geometric definitions. For example, it
was well known (see [9, p. 65], [12, p. 277], and [15, p. 578]) that the coefficients of the Hilbert
polynomial of a subvariety are the Euler–Poincaré characteristics of a sequence of intersections
with generic hyperplanes. In this setting there are also many related interpretations available,
such as the Hirzebruch–Riemann–Roch formula (see [5, Example 15.1.4] or [7, Lemma 1.7.1]).
In the case of a projective space over a field, there is an explicit relationship between the Hilbert
polynomial and the total Chern class of a coherent sheaf; see [4, Exercise 19.18] and [3].

In this paper we investigate a question raised by V. Srinivas in conversation: Can one obtain
the Hilbert–Samuel polynomial, and so in particular the multiplicity, of a module over a regular
local ring by blowing up the maximal ideal instead of modding out by its powers? That is, can this
polynomial be interpreted via intersection theory on the blow-up of the affine scheme at its closed
point, say via a Riemann–Roch type formula? Indeed, this is the case. Combining Theorems 3.1
and 2.1, we obtain the following result.

We point out first that, although the Riemann–Roch theorem exists in various forms depending
on the context under consideration, it is often stated in a rather abstract way. This is due to the fact
that the Todd class involved usually has no precise expression. Here, in the case of the blow-up of
a nonsingular affine scheme, our result provides an explicit formulation for the Riemann–Roch
theorem.

We recall some notation briefly (for precise definitions, see Section 1): Let A be a regular
local ring and X the blow-up of SpecA at its closed point. Recall that the Chow group of X is a
free abelian group on the powers of the exceptional divisor E. For a hyperplane section on (the
Chow group of) X, we write hX instead of hX[X] for simplicity. Finally, for any A-module M ,
let R(M) denote the Rees module of M .

Main Theorem. Let A be a regular local ring2 of dimension d + 1 and M an A-module. On the
blow-up X of SpecA at its closed point, one has

ch
([

R̃(M)
])( hX

1 − e−hX

)d+1

= adh0
X + ad−1h

1
X + · · · + a0h

d
X

where a0, . . . , ad are such that

�pM(t) = ad

d! t
d + ad−1

(d − 1)! t
d−1 + · · · + a0

is the discrete derivative of the Hilbert–Samuel polynomial of M .

This is indeed a Riemann–Roch formula on the blow-up. In fact, its similarity to the classical
Hirzebruch–Riemann–Roch formula

2 We note that one may generally assume that the ring is regular when computing the Hilbert–Samuel polynomial
of a module M since the polynomial is unchanged when M is viewed over a regular cover of the ring, say from a
Cohen presentation. (Similarly, the Hilbert function of a variety is often given a geometric interpretation after a suitable
embedding in a projective space.)
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χ(P, F ) =
∫

ch(F ) td(TP )

for a coherent sheaf F on a nonsingular projective scheme P over a field becomes more apparent
in the following reworking of the Hirzebruch formula above on Pd

k , which we derive in Proposi-
tion 2.5. Recall that the Chow group of Pd

k is a free abelian group on the linear subspaces [Pi
k].

Proposition. Let F be a coherent sheaf over Pd
k and suppose

τ
([F ]) def= ch(F )

(
h

1 − e−h

)d

= ad

[
Pd

k

] + ad−1
[
Pd−1

k

] + · · · + a1
[
P1

k

] + a0
[
P0

k

]
in the Chow group of Pd

k where h denotes a hyperplane section on Pd
k . Then the Hilbert polyno-

mial of F is

P F (t) = ad

d! t
d + ad−1

(d − 1)! t
d−1 + · · · + a0

This is derived by applying the Hirzebruch–Riemann–Roch formula to the twists of the
sheaf F and analyzing their Euler characteristics.

However, for our main theorem above, it was not possible to apply nonsingular Riemann–
Roch theory directly, since, although the blow-up is nonsingular, it is not smooth and conse-
quently has no tangent bundle; see 1.1. Note further that in our case the natural modules of
global sections to consider do not have finite length over A and so the Euler characteristics are
not even defined.

Instead the strategy of the proof of our main theorem above is to squeeze the blow-up X

naturally between two projective spaces:

Pd
k = E

f
↪→ X

g
↪→ Z = Pd

A

The exchange of information is attained by means of the local Riemann–Roch theorem applied
to each embedding:

K0(Z)
τZ/A

g∗

A∗(Z)Q

chZ
X

K0(X)
τX/A

f ∗

A∗(X)Q

chX
E

K0(E)
τE/A

A∗(E)Q

(0.0.1)

Here is a brief overview of the proof. In Section 2, the image of the Rees module sheaf R̃(M)

under the Riemann–Roch map τX/A is computed by a careful transfer via the lower commutative
square to the setting of E ∼= Pd

k , where the proposition above is applied. This yields Theorem 2.1.

Then, in Section 3, the image of R̃(M) under τX/A (which is technically defined on Z rather than
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on X anyway) is recomputed via the top square to yield a formula involving Chern characters
defined on X itself, rather than on Z, yielding Theorem 3.1. Combining these two results gives
our main theorem above; we give a proof at the end of Section 3 since it is in fact simpler to
derive directly from the proofs of those two theorems instead of from the statements themselves.

As for the organization of the remaining parts of the paper, Section 1 contains the necessary
background and basic set-up and Section 4 addresses the issue of determining the constant term
of the Hilbert–Samuel polynomial, clearly missing from our approach above. For this we simply
extend a result of Johnston and Verma on ideals to the setting of modules. Although we include
the proofs here for completeness, they are modeled directly on theirs. Of course, it would be nice
to know whether there is a single approach that yields the entire Hilbert–Samuel polynomial, but
the authors do not have further insight into this question.

We end with two remarks. First, again, since the blow-up of SpecA is not smooth over SpecA,
the machinery of nonsingular Riemann–Roch theory, which concerns itself with schemes non-
singular over a field (or smooth over a regular base), could not be applied directly on the blow-up
to deduce our results. In fact, that brings us to the second remark: The Riemann–Roch map itself
is not well understood for nonsmooth schemes. But the proof of our main theorem proceeds by

computing the image of the sheaf R̃(M) under the Riemann–Roch map τX/A, in two different
ways. So, since the twists of these sheaves actually generate the Chow group of the blow-up X

(see Proposition 1.12), in some sense this gives an explicit computation of the Riemann–Roch
map for a nonsmooth scheme.

We wish to thank Vasudevan Srinivas for introducing us to the problem and Kazuhiko Kurano
and Paul Roberts for their generous help along the way. We also thank Orlando Villamayor for
pointing out Proposition 1.12 to us. The referee’s comments are very much appreciated for they
helped us make the statements in the paper more accurate.

1. Preliminaries

We first describe the basic setting of the paper. Then we review background on the parts of
intersection theory used in this paper and on Hilbert polynomials.

Basic setting

Let A be a regular local ring of dimension d + 1 with the maximal ideal m and residue field
k = A/m. Consider the blow-up

X

π

SpecA

of SpecA at its closed point m, and let E denote the exceptional divisor of the blow-up. Let
f denote the embedding E ↪→ X. We assume that the Chow group of SpecA is isomorphic to Z;
this is known if the regular local ring A contains a field and unknown otherwise.

Recall that X = Proj(R(A)), where R(A) is the Rees ring of A:

R(A) = A[mt] =
⊕

mi
i�0
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and that E = Proj(gr(A)), where gr(A) is the associated graded ring of A:

gr(A) = R(A)/mR(A) =
⊕
i�0

mi/mi+1

Furthermore, since A is regular local, gr(A) is a polynomial ring in d + 1 variables and so there
is an isomorphism

E ∼= Pd
k

Indeed, E is the exceptional divisor of the blow-up of the nonsingular scheme SpecA at its closed
point.

For any A-module M define the Rees module as

R(M) =
⊕
i�0

miM

and the associated graded module as

gr(M) = R(M)/mR(M) =
⊕
i�0

miM/mi+1M

If M is finitely generated, R̃(M) and g̃r(M) are coherent sheaves on X and E, respectively.

Properties of the blow-up

Note that X is nonsingular since it is the blow-up of the nonsingular scheme SpecA at the
closed point m. However, it is not smooth over SpecA.

Proposition 1.1. X is nonsingular but not smooth over A.

Proof. To see that X is not smooth, it suffices to show that the sheaf of differentials is not locally
free. Using the description of the affine patches of X in (1.3.1) below, one computes easily that
the sheaf of differentials is in fact m-torsion. �

We record below some well-known facts about the blow-up.

1.2. We describe here equations that define the blow-up as a projective variety.
Let a0, a1, . . . , ad be a minimal set of generators for m. Since A is regular local, the Rees ring

has the well-known presentation

R(A) ∼= A[X0,X1, . . . ,Xd ]/I (1.2.1)

where I is the ideal generated by the set of (2 × 2)-minors of the matrix

(
X0 X1 · · · Xd

)

a0 a1 · · · ad
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Under this isomorphism the image of Xi in the quotient corresponds to the image of the minimal
generator ai in the degree 1 piece of the Rees ring.

This presentation allows us to consider X = Proj(R(A)) as a closed subscheme of a projective
space. We denote the embedding by

g :X ↪→ Z = Pd
A (1.2.2)

Note further that the map g is a regular embedding, and so also local complete intersection
(henceforth l.c.i), because both X and Z are nonsingular and g is an embedding. (Indeed, the
maps of local rings are surjections of regular rings and thus must be given as a quotient by a
regular sequence. In fact, this sequence necessarily consists of part of a set of minimal generators
for the maximal ideal.)

Note that the composition

Pd
k = E

f
↪→ X

g
↪→ Z = Pd

A (1.2.3)

is simply the natural map Pd
k ↪→ Pd

A defined on the ring level by going “mod m”.

1.3. We describe here the affine patches of the blow-up.
Using (1.2.1) to consider X = Proj(R(A)) as a closed subscheme of Z = Pd

A, we examine
the affine patch where Xi �= 0. Upon inverting Xi , the ideal I is generated by the d elements
ajXi − aiXj for j �= i, equivalently, by

aj − ai

Xj

Xi

j �= i

(the other generators ajXk − akXj for j, k �= i can be obtained from these). Therefore, letting

Tj = Xj

Xi
for each j �= i, the ith affine patch is simply

Spec
(

R(A)(Xi)

) = Spec

(
A[T0, . . . , T̂i , . . . , Td ]

({aj − aiTj }j �=i )

)
(1.3.1)

Chow groups/rings

In the next few parts of this section, we review the results from intersection theory used in this
paper. For basic definitions and constructions, see the books by Fulton [5] and Roberts [11].

For any projective scheme Y , let A∗(Y ) denote the Chow group of Y , graded by dimen-

sion rather than codimension. We will work mostly with the rational Chow group A∗(Y )Q
def=

A∗(Y ) ⊗Z Q. For any l.c.i. morphism f :W → Y of projective schemes, there is a Gysin homo-
morphism

g∗ : A∗(Y )Q → A∗(W)Q

as described in [5, Chapter 6], to be thought of as giving “intersection products” of elements
of A∗(Y )Q with W .
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The Chow ring of the blow-up X

Returning to the setting of this paper, let X be the blow-up and E its exceptional divisor. The
main goal in this part is to give an explicit description of the Chow ring of X. It is derived from
corresponding descriptions of the Chow ring of E.

Since E is a Cartier divisor on X, the product [E] · α, for any α in A∗(X), is defined as
c1(L) ∩ α where L is the line bundle defined by E and c1(L) is the first Chern class of L.
Whether the result is thought of as an element of A∗(X) or of A∗(E) will always be obvious
from the context. Considering [E] as a cycle class in Ad−1(X), we also denote by [Ei] the
iterated self-product [E] · [E] · · · [E] of i copies of [E].

Recall that E is in fact the projective space Pd
k , and thus its Chow ring has a well-known

description in terms of hyperplane sections. Let hY denote a hyperplane section on any projective
scheme Y . To simplify the appearance of the formulas in this paper, we will write simply hi

Y for
the class of hi

Y ([Y ]) in either A∗(Y ) or A∗(Y )Q. Whether or not the Chow ring is tensored by Q
will always be obvious from the context.

Proposition 1.4. Let B be a regular local ring. Let W denote the projective space Pd
B and

hW a hyperplane section on W . The Chow ring of Pd
B is a free abelian group on the basis

h0
W = [

Pd
B

]
, h1

W = [
Pd−1

B

]
, . . . , hi

W = [
Pd−i

B

]
, . . . , hd

W = [
P0

B

]
where Pd−i

B is considered as a linear subvariety of Pd
B . Furthermore, hd+1

W = 0.

For E, this basis can be compared with the list of powers [Ei] ∈ A∗(E) as follows, see [5,
Example 3.3.4 and B.6.3]:

Proposition 1.5. In the setting of this paper, there is an equality in A∗(E)

hi
E = (−1)i

[
Ei+1]

In particular, the powers

[E], [
E2], . . . ,

[
Ed+1]

also form a Z-basis for the Chow group A∗(E). Furthermore, [Ed+2] = 0.

The description of the Chow ring of X can now be derived from the one of E above using a
split exact sequence involving the Chow group of the blow-up.

Proposition 1.6. The Chow ring of X is a free abelian group on the basis

[
E0] = [X], [

E1], . . . ,
[
Ed

]
Furthermore, [Ed+1] = 0.
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Proof. Let S denote SpecA; recall that we are assuming that A∗(S) = Z[S]. There is a split
exact sequence (cf. [5, Proposition 6.7(e)])

0 → Ai (SpecA/m)
α−→ Ai (E) ⊕ Ai (S)

β−→ Ai (X) → 0

for all i = 0, . . . , d + 1 such that

(a) α is an isomorphism when i = 0, and
(b) β = (f∗,π∗),

where f : E → X and π : X → S are as previously defined.
First, condition (a) yields that A0(X) = 0 and thus also that [Ed+1] = 0.
Next, for 1 � i � d , both Ai (SpecA/m) and Ai (S) vanish, and so β restricts to an isomor-

phism Ai (E)
∼=−→ Ai (X). Furthermore, by condition (b) this map is simply the pushforward f∗

and so sends [Ed+1−i] to [Ed+1−i].
Lastly, since both Ad+1(SpecA/m) and Ad+1(E) vanish and π∗([S]) = [X], we see that

Ad+1(X) = Z[X]. �
Local Chern characters

Local Chern characters provide maps on Chow groups. We recall them only in the special
case of perfect embeddings. Recall that for any closed embedding f :W → Y of schemes, f is
perfect if f∗OW can be resolved by a finite complex E• of vector bundles on Y . Note that any l.c.i.
morphism is perfect. In particular, both maps studied in this paper, f :E ↪→ X and g :X ↪→ Z,
are perfect.

For any closed perfect embedding f :W → Y , there is a homomorphism

chY
W : A∗(Y )Q → A∗(W)Q

called the local Chern character. For a regular embedding, this map can be described more

explicitly as follows, see [5, Corollary 18.1.2] (applied to the maps W
i= W

j
↪→ Y ).

Proposition 1.7. If f :W → Y is a regular embedding with normal bundle N , then

chY
W = td(N)−1 · f ∗

where f ∗ is the Gysin homomorphism.

The local Chern character chX
E

Returning to the setting of this paper, let X be the blow-up, E the exceptional divisor,
f :E ↪→ X the inclusion, and N = NX

E the normal bundle. By Proposition 1.7,

chX
E = td(N)−1 · f ∗

We proceed to give a more explicit description of each factor above.
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Lemma 1.8. In the setting of this paper, the Gysin map f ∗ : A∗(X) → A∗(E) is given by multi-
plication by [E]. In particular, it is an isomorphism of groups.

Proof. By [5, Corollary 8.1.1] for any x ∈ A∗(X) one has that [E] ·x = f !(x) in A∗(|x|∩E) and
so the desired formula follows upon pushing forward to A∗(E). The second statement follows
using Propositions 1.5 and 1.6. �
Lemma 1.9. In the setting of this paper, if N is the normal bundle to E in X, then

td(N)−1 = multiplication by
1 − e−[E]

[E]
Proof. Note that N is a line bundle. It suffices to show that the action of the Chern class c1(N)

on A∗(E) is the same as multiplication by [E]. Indeed, in view of Lemma 1.8, since E is a
divisor one may apply [5, Proposition 6.1(c)] using [5, Proposition 2.6(c)] and noting that N =
f ∗(OX(E)). �

As a consequence of Lemmas 1.8 and 1.9 one obtains:

Proposition 1.10. The local Chern character

chX
E : A∗(X)Q → A∗(E)Q

provides an isomorphism of Chow groups with

chX
E = multiplication by 1 − e−[E]

Grothendieck groups and Gysin maps

First we recall for Grothendieck groups the Gysin map derived from Serre’s intersection
multiplicity formula [13]. Let K0(Y ) denote the Grothendieck group of coherent sheaves on a
scheme Y .

Definition 1.11. (See [5, Example 15.1.8], [1, III].) Let f :W → Y be a perfect embedding of
schemes and E• a finite complex of vector bundles on Y resolving f∗OW . There is a Gysin ho-
momorphism f ∗ : K0(Y ) → K0(W) induced by the following formula: for any coherent sheaf F
on Y

f ∗([F ]) =
∑

i

(−1)i
[
TorYi (OW, F )

]

where TorYi (OW, F ) is the ith homology sheaf of the complex E• ⊗OY
F . Perfection of the

map f ensures that the sum is finite.

Although we do not need such a precise description of the Grothendieck group as of the
Chow group, we still present the following curious fact for the general interest of the reader:
The Grothendieck group of coherent sheaves on the blow-up of the affine scheme SpecA for any
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ring A is generated by the classes defined by the Rees modules R(M) and their twists, as we
show next. The result follows by a direct application of two well-known theorems of Serre for
coherent sheaves on projective schemes.

Proposition 1.12. Let A be a local ring, and let X be the blow-up Proj(R(A)) of SpecA at its
closed point. For every coherent sheaf F on X, there exists a finitely generated A-module M and

a positive integer n0 such that F = ˜R(M)(−n0).

Proof. Since X is a projective scheme over A, there exists a positive integer n0 such that for all
n � n0, F (n) can be generated by a finite number of global sections (cf. [6, Theorem II.5.17]).
This is equivalent to saying that for all n 
 0,

Γ
(
X, F (n)

) = mn−n0Γ
(
X, F (n0)

)
Let M be Γ (X, F (n0)), which is a finitely generated A-module by [6, Theorem III.5.2(a)]. Since⊕

n�0 Γ (X, F (n)) and
⊕

n�n0
mn−n0M coincide on all large enough homogeneous compo-

nents, they define the same sheaf; equivalently, F = R̃(M)(−n0). �
Riemann–Roch theory

As proved in Proposition 1.1, X is not smooth over A, and so the “nonsingular Riemann–Roch
theory” from Chapter 15 of [5] cannot be applied to X. Furthermore, we will require Riemann–
Roch theorems for schemes not necessarily over a field; so, although references are given to
specific results from Chapter 18 of [5], the versions given here are understood to include the
modifications described in [5, Chapter 20] or in [11].

The Gysin maps on Grothendieck groups and the local Chern characters are connected by the
Riemann–Roch Theorem [5, Theorem 18.2 or 18.3]: It states that for all algebraic schemes Y

over base scheme SpecA there is a homomorphism

τY = τY/A : K0(Y ) → A∗(Y )Q

called the Riemann–Roch map, which is defined using Todd classes after embedding Y in a
smooth space, such that τY satisfies various natural properties such as “covariance” (compatibil-
ity with pushforward under proper maps) and a “module” property (compatibility of the module
action on Grothendieck groups with Chern characters on the Chow group). However, we will
only need the local Riemann–Roch formula, a consequence of the Riemann–Roch Theorem:

Theorem 1.13 (Local Riemann–Roch formula). (See [5, Examples 18.3.15 or 18.3.12].) If
f :W → Y is a perfect morphism of schemes, then the diagram

K0(Y )
τY

f ∗

A∗(Y )Q

chY
W

K0(W)
τW

A∗(W)Q

commutes, where f ∗ is the Gysin homomorphism as in Definition 1.11.
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A well-known consequence of the Riemann–Roch theorem is that the Riemann–Roch map τY

induces an isomorphism between the rational Grothendieck and Chow groups: K0(Y )Q
∼=

A∗(Y )Q.

Hilbert polynomials

We give a brief review of the facts on Hilbert–Samuel polynomials used in this paper. Let M be
a finitely generated A-module of dimension n + 1. For integers j 
 0, the length 
A(M/mjM)

is a polynomial type function in j of degree n + 1.

Definition 1.14. The Hilbert–Samuel polynomial of M is the polynomial pM(t) such that

pM(j) = 
A

(
M/mjM

)
for all j 
 0 in Z

We now connect this polynomial with the Hilbert polynomial of the associated graded module
gr(M) over gr(A).

Remark 1.15. For any function f : Z → Z, its discrete derivative is defined as

�f (t)
def= f (t + 1) − f (t)

It is well known that �f (t) is a polynomial for t 
 0 if and only if f (t) is a polynomial for
t 
 0. In this case, one can also obtain f (t) up to a constant with relative ease from �f (t) by
“discrete integration”.

Notice that the discrete derivative of the Hilbert–Samuel polynomial of M is

�pM(t)
def= 


(
M/mt+1M

) − 

(
M/mtM

) = 

(
mtM/mt+1M

) = 

((

gr(M)
)
t

)
With this motivation, one can show that: for any finitely generated graded gr(A)-module

N = ⊕
j�0 Nj , the length 
(Nj ) = dimk Nj is a polynomial type function in j when j is large

enough.

Definition 1.16. Let N = ⊕
j�0 Nj be a finitely generated graded gr(A)-module. The Hilbert

polynomial of N is the polynomial PN(t) such that

PN(j) = 
(Nj ) for all j 
 0 in Z

Note that the Hilbert polynomial of gr(M) is simply the discrete derivative of the Hilbert–
Samuel polynomial of M : Pgr(M)(t) = �pM(t). In particular, it has degree n.

The analogous definition for a coherent sheaf F on a projective scheme Y is given by consid-
ering the vector space dimension, dimk Γ (Y, F (j)), of the global sections of the twists of F ; this
dimension is well known to be a finite number and is a polynomial type function in j whenever
j is a large enough positive integer.
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Definition 1.17. Let F be a coherent sheaf on a projective scheme Y over a field k. The Hilbert
polynomial of F is the polynomial P F (t) such that

P F (j) = dimk Γ
(
Y, F (j)

)
for all j 
 0 in Z

From [6, Exercise II.5.9] one has:

Remark 1.18. If Y = Proj(S) and F = Ñ where S is a graded ring with S0 = k and N is a
finitely generated graded S-module, then Γ (Y, F (j)) ∼= Nj for j 
 0, see [6, Exercise II.5.9].
In particular, the Hilbert polynomials of the sheaf F and the module N agree:

P F (t) = PN(t)

2. The Hilbert–Samuel polynomial

We want to express the Hilbert–Samuel polynomial pM(t) of M via intersection theory on
the blow-up of SpecA. We do this by going mod m via a local Riemann–Roch formula and
using classical intersection theory on the projective space Pd

k over the field k. Note that, although
the proof itself goes mod m and uses the associated graded module gr(M), the statement of the
theorem shows that the same multiplicity information on M over A is detected by blowing up A.
Indeed, this is our main point.

It should be noted that the constant term of pM(t) is not recovered by this method; see Exam-
ple 2.2. We deal separately with the constant term in Section 4.

Recall from Proposition 1.6 that the Chow group of the blow-up X is free abelian with basis
[X], [E], [E2], . . . , [Ed ] where E is the exceptional divisor.

Theorem 2.1. Let A be a regular local ring of dimension d + 1 and M an A-module. If the
discrete derivative of the Hilbert–Samuel polynomial of M is3

�pM(t) = ad

d! t
d + ad−1

(d − 1)! t
d−1 + · · · + a0

then the image of [R̃(M)] under the Riemann–Roch map τX/A :K0(X) → A∗(X)Q is

τX/A

([
R̃(M)

]) =
( [E]

1 − e−[E]

)(
ad [X] − ad−1[E] + · · · + (−1)da0

[
Ed

])

Note that since ( [E]
1−e−[E] ) is a unit, one can read this result in reverse, namely as providing

�pM(t) given the expression of ( 1−e−[E]
[E] )τX/A([R̃(M)]) in terms of the standard basis of the

Chow group of X. Furthermore, one can then recover the Hilbert–Samuel polynomial of M (up
to a constant term) by discrete integration; see the discussion in Remark 1.15.

The proof of the theorem requires several supporting results of independent interest which are
developed first. Here we give a brief sketch of how these will eventually fit together to give the

3 Note that ad = ad−1 = · · · = an+1 = 0 if n = dimM − 1 < d .
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final proof, which can be found at the end of the section. Since the closed embedding E → X is
perfect, the local Riemann–Roch formula, Theorem 1.13, yields a commutative diagram,

K0(X)
τX/A

f ∗

A∗(X)Q

chX
E

K0(E)
τE/k

A∗(E)Q

(2.1.1)

First we show that f ∗([R̃(M)]) = [g̃r(M)] in Lemma 2.3. Since E = Pd
k , we are thus placed in

the classical setting of projective space over the field k. Here we apply the Hirzebruch–Riemann–
Roch formula with some additional computations to obtain the Hilbert polynomial of gr(M); see
Proposition 2.5. By the discussion in Remark 1.15, this is exactly the discrete derivative of the
Hilbert–Samuel polynomial of M . Finally, we move the result back via the isomorphism chX

E to

get the desired expression for τX/A([R̃(M)]) in the Chow group of the blow-up X.
Before we begin to prove the necessary supporting results, we give an example that shows

that R(M) does not contain information on the constant term of the Hilbert–Samuel polynomial
of M .

Example 2.2. For any nonzero A-module M of finite length, one has mnM = 0 for n 
 0, and

so the sheaf R̃(M) is the zero sheaf. But in this case, the Hilbert–Samuel polynomial of M is the
nonzero constant 
(M), where 
(M) is the length of M .

Lemma 2.3. Let A be a regular local ring and M a finitely generated A-module. For the Gysin
homomorphism f ∗ :K0(X) → K0(E),

f ∗([R̃(M)
]) = [

g̃r(M)
]

Proof. Let R = R(A). It is clear that OE = R̃/mR. By definition,

f ∗([R̃(M)
]) =

∑
i�0

(−1)i
[
T̃orR

i

(
R/mR, R(M)

)]

We claim that, for each j > 0, TorR
j (R/mR, R(M)) determines the zero sheaf on E and there-

fore the desired result follows as

f ∗([R̃(M)
]) = [ ˜R/mR ⊗R R(M)] = [

g̃r(M)
]

To prove the claim, we compute locally using the discussion from 1.2 and 1.3. In brief, the
vanishing follows from the facts that E is locally principal (E is a divisor!), that X is an integral
scheme, and that the high components of R(M) have positive depth. In more detail: Any minimal
set of generators a0, . . . , ad for m induces a natural embedding of X as a subvariety of Pd

A whose
ith affine patch has equations
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R(Xi) = A[T0, . . . , T̂i , . . . , Td ]
({a
 − aiT
}
�=i )

in local coordinates T
 = X


Xi
. In particular, one has that mR(Xi) = ai R(Xi) and so mR is locally

principal on Proj(R). Therefore,

TorR
j

(
R/mR, R(M)

)
(Xi)

= 0 for j � 2

and

TorR
1

(
R/mR, R(M)

)
(Xi)

= (0 :R(M) ai)(Xi) = (0 :R(M) m)(Xi)

However, as mnM has positive depth for n 
 0, one has

(0 :R(M) m)n = (0 :mnM m) = 0 for n 
 0

So indeed TorR
j (R/mR, R(M)) determines the zero sheaf on E for each j > 0. �

Remark 2.4. The proof of Lemma 2.3 yields a direct relation between resolutions of the

sheaf g̃r(M) on E and resolutions of the sheaf R̃(M) on the blow-up X, namely that

a resolution of g̃r(M) is given by the pullback of any resolution of R̃(M). However, as
TorR

1 (R/mR, R(M)) �= 0 in general, the resolutions of the R(A)-module R(M) and the gr(A)-
module gr(M) are not so clearly related.

Although a crucial lemma for Theorem 2.1 on the blow-up, the next result is independently
interesting for classical projective space over a field. It follows by a straightforward computation
from the Hirzebruch–Riemann–Roch formula; however, the authors have not been able to find it
stated in the literature.

Recall that the Chow group of Pd
k is a free abelian group on the linear subspaces [Pi

k] for
i = 0, . . . , d ; see Proposition 1.4.

Proposition 2.5. Let F be a coherent sheaf over Pd
k and let

τPd
k

([F ]) = ad

[
Pd

k

] + ad−1
[
Pd−1

k

] + · · · + a0
[
P0

k

]
be the image of [F ] in A∗(Pd

k )Q. Then the Hilbert polynomial of F is

P F (t) = ad

d! t
d + ad−1

(d − 1)! t
d−1 + · · · + a0

Proof. By definition, the Hilbert polynomial is

P F (t) = dimk Γ
(
Pd , F (t)

)
for t 
 0
k



C.-Y.J. Chan, C. Miller / Journal of Algebra 322 (2009) 3003–3025 3017
On the other hand, the Euler–Poincaré characteristic χ(Pd
k , F (t)) is a polynomial for all values

of t , cf. [5, Exercise III.5.2], which must then agree with the one above by Serre’s Vanishing
Theorem. That is,

PF (t) = χ
(
Pd

k , F (t)
)

for all t ∈ Z

By the Hirzebruch–Riemann–Roch Theorem, [5, Corollary 15.2.1, Theorem 15.2] (applied to a
finite resolution of F (t) by vector bundles) and the fact that the Todd class of the tangent bundle
of Pd

k is

td(TPd
k
) =

(
h

1 − e−h

)d+1

where h is a hyperplane section on Pd
k , one has for all t ∈ Z that

χ
(
Pd

k , F (t)
) =

∫
ch

(
F (t)

)( h

1 − e−h

)d+1

=
∫

eth ch(F )

(
h

1 − e−h

)d+1

where integration is defined as taking the coefficient of hd in the power series expansion of the
integrand.

On the other hand, by definition,

τPd
k

([F ]) = ch(F )

(
h

1 − e−h

)d+1

So, the Hilbert polynomial P F (t) is the coefficient of hd in the following expression

eth · τPd
k

([F ]) = eth
(
ad + ad−1h

1 + · · · + a1h
d−1 + a0h

d
)

=
(

1 + th + t2

2!h
2 + · · ·

)(
ad + ad−1h

1 + · · · + a1h
d−1 + a0h

d
)

That is,

P F (t) = ad

d! t
d + ad−1

(d − 1)! t
d−1 + · · · + a0 �

Proof of Theorem 2.1. By the discussion in Remark 1.15, the discrete derivative of the Hilbert–
Samuel polynomial of M is just the Hilbert polynomial of gr(M), which in turn equals the Hilbert

polynomial of the sheaf g̃r(M) by Remark 1.18.
Since the closed embedding E → X is perfect (E is locally principal and X is an integral

scheme), Theorem 1.13 yields a commutative diagram,
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K0(X)
τX/A

f ∗

A∗(X)Q

chX
E

K0(E)
τE/A

A∗(E)Q

It can be shown that τE/A = τE/k and so the diagram yields

chX
E ◦τX/A

([
R̃(M)

]) = τE/k ◦ f ∗([R̃(M)
]) = τE/k

([
g̃r(M)

])
(2.5.1)

where the last equality is from Lemma 2.3. On the one hand, since E = Pd
k , Proposition 2.5

yields (with [Pi
k] replaced by hd−i ) that if

τE/k

([
g̃r(M)

]) = adh0 + ad−1h
1 + · · · + a0h

d

then the Hilbert polynomial of g̃r(M) is

P
g̃r(M)

(t) = ad

d! t
d + ad−1

(d − 1)! t
d−1 + · · · + a0 (2.5.2)

Note that by Proposition 1.5 one has hi = hi
E = (−1)i[Ei+1]. On the other hand, by Proposi-

tion 1.10, the map chX
E is an isomorphism given by the explicit formula there. Therefore (2.5.1)

becomes

τX/A

([
R̃(M)

]) = (
chX

E

)−1(
ad [E] − ad−1

[
E2] + · · · + (−1)da0

[
Ed+1])

=
( [E]

1 − e−[E]

)(
ad [X] − ad−1[E] + · · · + (−1)da0

[
Ed

])
as desired. �
Remark 2.6. Let F = M̃ be a coherent sheaf on Pd

k , and set n = dimM − 1. Since Hilbert
polynomials are often written in terms of their Hilbert coefficients, namely in the form

P F (t) = en

(
t + n

n

)
− en−1

(
t + n − 1

n − 1

)
+ · · · + (−1)ne0

and since the Hilbert polynomial of Pi
k is

(
t+i
i

)
for i � 0, it is tempting to think that the two sets

of coefficients, {an, . . . , a0} in Proposition 2.5 and {en,−en−1, . . . , (−1)ne0} above, are equal.
But they are in fact not equal. Here instead, it is surprising to us that if we display the Hilbert
polynomial in t :

P F (t) = bnt
n + · · · + b0

then there is a close relationship between {an, . . . , a0} and {bn, . . . , b0}. Indeed, bi = ai

i! for i =
0, . . . , n as stated in Proposition 2.5.
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3. A Riemann–Roch formula

The goal of this section is to derive a Riemann–Roch formula on the blow-up scheme X.
Recall that X is nonsingular, but not smooth over A, so the classical Riemann–Roch theorems
are not valid on X. We embed X in a smooth scheme and use Riemann–Roch theory there. As
in (1.2.2), there is a natural embedding

g :X ↪→ Z = Pn
A

which is a regular embedding. The following result gives the desired Riemann–Roch formula on
the blow-up.

Theorem 3.1. Let Ng be the normal bundle to X in Z and let hX be a hyperplane section on X.
For any coherent sheaf F on X, there is an equality

τX/A

([F ]) = td(Ng)
−1

(
ch

([F ])( hX

1 − e−hX

)d+1)

Furthermore, the endomorphism td(Ng)
−1 of A∗(X)Q is determined by the values

td(Ng)
−1(hi

X

) = (−1)i
( [E]

1 − e−[E]

)[
Ei

]
for i = 0, . . . , d .

Proof. To avoid confusion in this proof, we use hZ , hX and hE to denote a hyperplane section
on Z = Pd

A, on X, and on E = Pd
k , respectively.

Since g is an l.c.i. morphism, Theorems 1.13 and 1.7 apply to give a commutative diagram

K0(Z)
τZ/A

g∗

A∗(Z)Q

td(Ng)−1·g∗

K0(X)
τX/A

A∗(X)Q

(3.1.1)

We claim that [F ] is a linear combination of twists of the structure sheaf in the rational
Grothendieck group K0(X)Q. First note that the localized Gysin map f ∗

Q :K0(X)Q → K0(E)Q

is an isomorphism. Indeed, from the local Riemann–Roch formula (Theorem 1.13) one has that
τE/A ◦ f ∗ = chX

E ◦τX/A, so it remains to remark that the Riemann–Roch maps τX/A and τE/A

induce isomorphisms on the rational level and that chX
E was shown to be an isomorphism in

Proposition 1.10. Next note that since E ∼= Pd
k , we may take a finite resolution of f ∗(F ) of the

form

0 → ·· · →
⊕

OE(−nij )
bij → ·· · → f ∗(F ) → 0
j



3020 C.-Y.J. Chan, C. Miller / Journal of Algebra 322 (2009) 3003–3025
This yields an equality in the rational Grothendieck group of X

[F ] = (
f ∗)−1

(∑
i,j

(−1)ibij

[
OE(−nij )

])

=
∑
i,j

(−1)ibij

[
OX(−nij )

]

=
∑
i,j

(−1)ibij g
∗([OZ(−nij )

])

= g∗
(∑

i,j

(−1)ibij

[
OZ(−nij )

])

Therefore, the commutative diagram above implies that

τX/A

([F ]) = td(Ng)
−1 · g∗ · τZ/A

(∑
i,j

(−1)ibij

[
OZ(−nij )

])
(3.1.2)

We compute this in stages. First, by definition, for any n, one has

τZ/A

([
OZ(−n)

]) = ch
([

OZ(−n)
])

td(TZ)

since Z is smooth and where TZ is the tangent bundle of Z. It is well known that

ch
([

OZ(−n)
]) = e−nhZ and ch

([
OX(−n)

]) = e−nhX

and that

td(TZ) =
(

hZ

1 − e−hZ

)d+1

Indeed, for the first two formulas apply [5, Example 3.2.3] and for the last formula apply [5,
Example 3.2.4] to the exact sequence

0 → OPd
A

→ (
OPd

A
(1)

)d+1 → TPd
A

→ 0

Lastly, noting that g∗ : A∗(Z)Q → A∗(X)Q takes hZ to hX by functoriality, we can now com-
plete the computation begun in (3.1.2):

τX/A

([F ]) = td(Ng)
−1 · g∗ · τZ/A

(∑
i,j

(−1)ibij

[
OZ(−nij )

])

= td(Ng)
−1 · g∗

(∑
(−1)ibij e

−nij hZ

(
hZ

1 − e−hZ

)d+1)

i,j
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= td(Ng)
−1

(∑
i,j

(−1)ibij e
−nij hX

(
hX

1 − e−hX

)d+1)

= td(Ng)
−1

(∑
(−1)ibij ch

([
OX(−nij )

])( hX

1 − e−hX

)d+1)

= td(Ng)
−1

(
ch

([F ])( hX

1 − e−hX

)d+1)

It remains to verify the action of td(Ng)
−1 on each individual hi

X . Since both inclusions

Pd
k = E

f
↪→ X

g
↪→ Z = Pd

A

are perfect, they induce maps

A∗(Z)Q
chZ

X−→ A∗(X)Q
chX

E−→ A∗(E)Q

Since the composition g ◦ f :E → Z is the natural inclusion of projective spaces as noted
in (1.2.3), we obtain

chX
E ◦ chZ

X

(
hi

Z

) = chZ
E

(
hi

Z

) = hi
E

But chX
E is an isomorphism by Proposition 1.10 and so

chZ
X

(
hi

Z

) = (
chX

E

)−1(
hi

E

) = (
chX

E

)−1(
(−1)i

[
Ei+1]) = (−1)i

( [E]
1 − e−[E]

)[
Ei

]
On the other hand, by Theorem 1.13 since g is an l.c.i. morphism,

chZ
X

(
hi

Z

) = td(Ng)
−1 · g∗(hi

Z

) = td(Ng)
−1(hi

X

)
So, indeed td(Ng)

−1(hi
X) = (−1)i( [E]

1−e−[E] )[Ei]. �
The Main Theorem in the introduction now follows almost immediately from Theorems 2.1

and 3.1. In fact, the derivation is a bit simpler than that of the individual theorems if one
works with the inverse image of the basis h0

E,h1
E, . . . , hd

E of A∗(E) under the isomorphism
chX

E : A∗(X) → A∗(E) without explicitly expressing it in terms of the basis [X], [E], . . . , [Ed ]
of A∗(X).

Proof of Main Theorem. To avoid confusion, we continue to use hX and hE for a hyperplane
section on X and E respectively.

On the one hand, from the proof of Theorem 2.1 (without converting from hE’s to [E]’s
in A∗(E)) one sees that

τX/A

([
R̃(M)

]) = (
chX

)−1(
adh0 + ad−1h

1 + · · · + a0h
d
)

E E E E
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On the other hand, by Theorem 3.1 we have that

τX/A

([
R̃(M)

]) = td(Ng)
−1

(
ch

([
R̃(M)

])( hX

1 − e−hX

)d+1)

However, from the very end of the proof of the latter, one sees that in fact

(
chX

E

)−1(
hi

E

) = td(Ng)
−1(hi

X

)
So indeed we have

ch
([

R̃(M)
])( hX

1 − e−hX

)d+1

= adh0
X + ad−1h

1
X + · · · + a0h

d
X

in the Chow group of X, as desired. �
4. The constant term of the Hilbert–Samuel polynomial

In this section we seek a description of the constant term of the Hilbert–Samuel polynomial,
the only term not obtained in our main theorem listed in the introduction. To this end, we extend a
result of Johnston and Verma [8] from the setting of ideals to that of modules. Our proof precisely
mirrors the one in [8].

The result we derive describes, for any A-module M , the difference of the Hilbert–Samuel
polynomial and the Hilbert–Samuel function via lengths of the graded pieces of the local coho-
mology of the Rees module of M . Recall that one defines the Hilbert–Samuel function of M as
hM(n) = 
(M/mnM).

Theorem 4.1. Let A be a local ring of dimension d + 1 and M a finitely generated A-module.
Let R denote the Rees ring R(A) and R+ the ideal generated by the elements of positive degree
in R(A). Then for all n � 0,

pM(n) − hM(n) =
d+2∑
i=0

(−1)i
A

(
Hi

R+
(

R(M)
)
n

)

In particular, evaluating the equation at n = 0, one obtains a formula for the constant term
(note that hM(0) = 0):

Corollary 4.2. Let A be a local ring of dimension d + 1 and M a finitely generated A-module.
The constant term of the Hilbert–Samuel polynomial of M equals

pM(0) =
d+2∑
i=0

(−1)i
A

(
Hi

R+
(

R(M)
)

0

)

Johnston and Verma’s theorem and Theorem 4.1 are both consequences of the following the-
orem due to Serre [14, Theorem C] for Hilbert functions and polynomials of graded modules.
A direct proof of Theorem 4.3 can be found in Ooishi’s paper [10] that uses local and global
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cohomology theorem and applies Serre’s Vanishing Theorem to achieve the result. It can also be
proved by induction on the dimension of the module (cf. [2, Theorem 4.4.3]). Recall that one
defines the Hilbert function of a graded module N as HN(n) = 
(Nn).

Theorem 4.3 (Serre). Let B be a standard graded homogeneous Noetherian ring of dimension e

over the Artinian local ring B0. Let B+ denote the ideal generated by the elements of positive
degree. Assume that N is a finitely generated graded B-module. Then for all n � 0

HN(n) − PN(n) =
e∑

i=0

(−1)i
B0

(
Hi

B+(N)n
)

Proof of Theorem 4.1. Consider the submodule R+(M) = mM ⊕m2M ⊕· · · of R(M) and the
resulting exact sequence

0 → R+(M) → R(M) → RM → 0

where RM denotes M viewed as a module over R. The long exact sequence of local cohomology
modules implies that for i � 2 and for i = 0,1 with n > 0, one has

Hi
R+

(
R+(M)

)
n

∼= Hi
R+

(
R(M)

)
n

(4.3.1)

From the short exact sequence

0 → R+(M)(1) → R(M) → gr(M) → 0 (4.3.2)

and the isomorphisms (4.3.1) one obtains for each n � 0 a long exact sequence of graded pieces
of local cohomology modules

0 → H 0
R+

(
R(M)

)
n+1 → H 0

R+
(

R(M)
)
n

→ H 0
R+

(
gr(M)

)
n

→ H 1
R+

(
R(M)

)
n+1 → H 1

R+
(

R(M)
)
n

→ H 1
R+

(
gr(M)

)
n

...

· · · → Hd+2
R+

(
R(M)

)
n+1 → Hd+2

R+
(

R(M)
)
n

→ Hd+2
R+

(
gr(M)

)
n

→ 0 (4.3.3)

Lemma 4.4. Each local cohomology module in (4.3.3) has finite length over A.

We first assume Lemma 4.4 and continue to prove Theorem 4.1. For each n � 0, set

φ(n) =
d+2∑
i=0

(−1)i

(
Hi

R+
(

R(M)
)
n

)

Then additivity of lengths along the long exact sequence (4.3.3) yields

−
d+2∑

(−1)i
A

(
Hi

R+
(
gr(M)

)
n

) = φ(n + 1) − φ(n) = �φ(n) (4.4.1)

i=0
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On the other hand, by Theorem 4.3

Pgr(M)(n) − Hgr(M)(n) = −
d+2∑
i=0

(−1)i
A

(
Hi

R+
(
gr(M)

)
n

)
(4.4.2)

Since Pgr(M)(n) = �pM(n) and Hgr(M)(n) = �hM(n), Eqs. (4.4.1) and (4.4.2) yield

�φ(n) = �
(
pM(n) − hM(n)

)
Since, in addition, both φ(n) and pM(n) − hM(n) vanish for n 
 0, they must be equal, com-
pleting the proof of the theorem. �

It remains to prove Lemma 4.4. We thank the referee for pointing out the following more
concise proof.

Proof of Lemma 4.4. It suffices to show that Hi
R+(R(M))n has finite length over A for each

i � 0 and n � 0. By Serre’s theorem (cf. [6, Theorem III.5.2(a)]), all these modules are finitely
generated over A. So it suffices to show that they are supported at the maximal ideal m. This is
equivalent to showing that (H i

R+(R(M))n)a = 0 for all nonzero a ∈ m, where, for an A-module

N , Na denotes the localization obtained by inverting the multiplicatively closed set {1, a, a2, . . .}.
Notice that Ra = ⊕

i�0(m
i )at

i ∼= Aa[t] since, for each i, (mi )a = Aa . Similarly, R(M)a ∼=
Ma[t]. Thus one obtains

(
Hi

R+
(

R(M)
)
n

)
a

= Hi
(t)

(
Ma[t]

)
n

= 0

if i �= 1, or i = 1 and n � 0, by directly computing the local cohomology module Hi
(t)(Ma[t])

using the Čech complex. �
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