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THE CONE SPANNED BY MAXIMAL COHEN-MACAULAY

MODULES AND AN APPLICATION

C-Y. JEAN CHAN AND KAZUHIKO KURANO

Abstract. The aim of this paper is to define the notion of the Cohen-
Macaulay cone of a Noetherian local domain R and to present its applications
to the theory of Hilbert-Kunz functions. It has been shown by the second

author that with a mild condition on R, the Grothendieck group G0(R) of
finitely generated R-modules modulo numerical equivalence is a finitely gener-
ated torsion-free abelian group. The Cohen-Macaulay cone of R is the cone in

G0(R)R spanned by cycles represented by maximal Cohen-Macaulay modules.
We study basic properties on the Cohen-Macaulay cone in this paper. As an
application, various examples of Hilbert-Kunz functions in the polynomial type
will be produced. Precisely, for any given integers εi = 0,±1 (d/2 < i < d), we
shall construct a d-dimensional Cohen-Macaulay local ring R (of characteristic

p) and a maximal primary ideal I of R such that the function �R(R/I[p
n]) is

a polynomial in pn of degree d whose coefficient of (pn)i is the product of εi
and a positive rational number for d/2 < i < d. The existence of such ring is
proved by using Segre products to construct a Cohen-Macaulay ring such that
the Chow group of the ring is of certain simplicity and that test modules exist
for it.

1. Introduction

Let R be a Noetherian local domain. In this paper, we introduce the notion
of the Cohen-Macaulay cone and test modules of R. As an application, for any
given integers εi = 0,±1 (d/2 < i < d), we shall construct a d-dimensional Cohen-
Macaulay local ring R (of characteristic p) and a maximal primary ideal I of R such
that the function �R(R/I [p

n]) is a polynomial in pn of degree d whose coefficient of
(pn)i is the product of εi and a positive rational number for d/2 < i < d.

The main materials are divided into three parts. The first part is an introduction
to the theory of the Cohen-Macaulay cone and test modules. Then we prove the
existence of a Cohen-Macaulay ring such that its Chow group of the ring is of certain
simplicity and it has a test module. Using the ring just constructed, we shall further
build a ring whose Hilbert-Kunz function satisfies the required conditions.

We now describe in more detail these new notions, and in the case of positive
characteristic, their contribution to the theory of Hilbert-Kunz functions.
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Let R be a Noetherian local domain of dimension d. The Grothendieck group
G0(R) of finitely generated R-modules modulo numerical equivalence is defined and

studied in [16], where it is proven that under a mild condition G0(R) is a finitely
generated torsion-free abelian group (see also Theorem 2.1 in Section 2). Let ρ(R)

denote the rank of G0(R). In this paper, we let R be a Cohen-Macaulay local

domain and introduce a cone inside Rρ(R) = G0(R) ⊗Z R consisting of all non-
negative linear combinations of maximal Cohen-Macaulay modules. This is called
the Cohen-Macaulay cone of R. A module M is a test module if M is a maximal
Cohen-Macaulay module such that its Todd class consists of only the top term;
i.e., τR([M ]) ∈ Ad(R)Q. In the case where R is an F-finite Cohen-Macaulay local

ring (of positive characteristic p) with algebraically closed residue class field, M is
a test module if and only if it is a maximal Cohen-Macaulay module such that

[F eM ] = pde[M ] in G0(R)Q

for some (any) e > 0, where [F eM ] denotes the R-module M whose R-module struc-
ture is given by the e-th power of the Frobenius map. If the small Cohen-Macaulay
conjecture is affirmative, then any Noetherian local ring has a test module. How-
ever, the authors do not know whether test modules exist or not even if R is a
Gorenstein ring. We refer the reader to [14] for test modules; however, the defi-
nition of test modules in this paper is slightly different from that in [14]. In this
paper, we need test modules which contain the ring as a direct summand, that is,
test modules which are in the interior of the Cohen-Macaulay cone of R. The ideas
of these new notions are motivated by the studies of Hilbert-Kunz functions.

Assume additionally that R has a positive characteristic p with dimension d. Let
I be a maximal primary ideal. The Hilbert-Kunz function with respect to I, named
by Monsky [20], is defined as

ϕR(n) = length (R/I [p
n]R)

where I [p
n] is the Frobenius n-th power of I. Unlike the usual Hilbert function,

the shape of the Hilbert-Kunz function varies from case to case. Monsky proved
that ϕM (n) = eHK(I,M) pnd +O(pn(d−1)) for some positive constant eHK(I,M).
Its stability has been studied in Huneke-McDermott-Monsky [12], Fakhruddin-
Trivedi [8], Brenner [1], Hochster-Yao [11], Chan-Kurano [3], etc.

Classically from Macaulay’s theorem one knows what numerical functions are
Hilbert functions (cf. [2, Section 4.2]). Similarly for the Hilbert-Kunz function, it is
natural to ask what functions are Hilbert-Kunz functions. But the latter is a much
more subtle question since the shape of a Hilbert-Kunz function is unpredictable in
general. In [17, Example 3.1(3)], the second author proved that if I is a maximal
primary ideal of a local ring R that satisfies the following two conditions:

• R is an F -finite Cohen-Macaulay local ring whose residue class field is
algebraically closed, and

• I has finite projective dimension,

then the Hilbert-Kunz function of R with respect to I is a polynomial of pn (see
also [16] and [3, Lemma 3.4]). We refer the reader to MacDonnell [19] in the case
where I is a homogeneous ideal. One aim of this paper is to prove the following
theorem.
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THE CONE SPANNED BY MAXIMAL COHEN-MACAULAY MODULES 941

Theorem 1.1. Let d be a positive integer and p a prime number. Let ε0, ε1, . . . ,
εd be integers such that

εi =

⎧⎨
⎩

1 i = d,
−1, 0 or 1 d/2 < i < d,
0 i ≤ d/2.

Then, there exists a d-dimensional Cohen-Macaulay local ring R of characteristic p,
a maximal primary ideal I of R of finite projective dimension, and positive rational
numbers α, βd−1, βd−2,. . . , β0 such that

�R(R/I [p
n]) = εdαp

dn +

d−1∑
i=0

εiβip
in

for any n > 0.

The proof of Theorem 1.1 is established by constructing a test module M over a
Cohen-Macaulay ring whose rational Chow group A∗(R)Q is of certain simplicity.
To determine how the Todd class of a module looks is very difficult in general since
G0(R)Q is too big. As mentioned earlier G0(R)R is a finite dimensional R-vector
space of dimension ρ(R). We denote the Cohen-Macaulay cone

∑
M :MCM

R≥0[M ]

in Rρ(R) = G0(R)R by CCM (R). Then we prove that the existence of a test module
is equivalent to certain properties on the projections of the Cohen-Macaulay cone
CCM (R) in the Chow group A∗(R)R via the Riemann-Roch map τR (Theorem 2.12).

Assume that R is a Cohen-Macaulay local domain. If dimR ≤ 2, then ρ(R) = 1.
If dimR ≥ 3, then there is no upper bound for ρ(R). In either case, the Cohen-
Macaulay cone has the maximal possible dimension, i.e., dimR CCM (R) = ρ(R).
Indeed if ρ(R) = 1, then CCM (R) is obviously a half line. For arbitrary ρ(R), we
prove that there is an open neighborhood U of [R] in Rρ(R) such that U is contained
in the interior of CCM (R). This is proved in Lemma 2.5 along with other properties
of the Cohen-Macaulay cone.

If the ring R is of finite Cohen-Macaulay type—namely, there exist only finitely
many indecomposable isomorphism classes of maximal Cohen-Macaulay modules—
then the cone is finitely generated and so it is closed in Rρ(R) under the usual
topology for the Euclidean space. The Cohen-Macaulay cone in general may not be
finitely generated, but the authors do not know a Cohen-Macaulay ring R whose
CCM (R) is not closed.

In order to know how the notion of Cohen-Macaulay cones and test modules are
applied in the study of Hilbert-Kunz functions, we provide a conceptual sketch of
a key step in the proof of Theorem 1.1. The idea presented below is loosely about
Step 2.

By the singular Riemann-Roch theorem, the coefficients of the Hilbert-Kunz
function with respect to I of finite projective dimension over a Cohen-Macaulay
ring can be expressed in terms of the localized Chern characters. Precisely it
says that the coefficient of (pn)i is chi(G•)(τR([R])i) where G• is the resolution of
R/I and τR([R])i in Ai(R)R is the i-th Todd class of R. Thus to obtain desired
coefficients for the Hilbert-Kunz function is equivalent to obtaining the values of
the corresponding localized Chern characters when applied to the Todd classes of
R.

We prove Theorem 1.1 by constructing a module over a Cohen-Macaulay ring A
such that the i-th Todd class of the module in Ai(A)Q for each i has the desired value
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942 C-Y. JEAN CHAN AND KAZUHIKO KURANO

when the localized Chern character is applied to it. Then we take the idealization
of the module to obtain a ring whose Hilbert-Kunz function has the required form.
The module just described is constructed by induction on i, so the initial step that
shows the existence of a ring A that possesses certain properties and a test module
is crucial. This is done in Lemma 3.1.

Last, we would like to make a remark without the intention of getting into any
technical detail in the present paper. In Theorem 1.1, the coefficients of the poly-
nomial are assumed to be zero in the terms of degree d/2 or lower. This assumption

is made due to the fact that Ai(R)Q = 0 for i ≤ d/2 (for a homogeneous coordinate

ring R of a smooth projective variety) if Grothendieck’s standard conjecture holds

(cf. [16, Remark 7.12]). There is no known example where Ai(R)Q does not vanish

for some i ≤ d/2.
The paper is organized as follows. Section 2 introduces the Cohen-Macaulay cone

of an arbitrary local domain and the definition of test modules. Basic properties
of these new notions are proved. In Example 2.10, assuming R is complete or
essentially of finite type over a field, we construct some examples of test modules.
We also prove equivalence conditions of the existence of test modules; for a general
local domain, it can be found in Remark 2.9. Main results about such equivalence
for Cohen-Macaulay rings are stated and proven in Theorem 2.12.

Section 3 discusses the Hilbert-Kunz functions and proves Theorem 1.1, which
constructs rings whose Hilbert-Kunz function is of the required form. For Theo-
rem 1.1, we need Lemma 3.1, which assures the existence of a Cohen-Macaulay
ring such that it has test modules and its numerical Chow group satisfies certain
properties. The proof of Lemma 3.1 deserves independent attention and so Sec-
tion 4 is devoted to proving this lemma. The Chow group of X = Pm ×Pn and the
Riemann-Roch map τX : G0(X)Q → A∗(X)Q have been carefully studied by the
second author [13]. Lemma 3.1 is proven by taking appropriate Segre products of
graded rings and utilizing the special properties on τX and A∗(X)Q.

2. Cohen-Macaulay cone

Let (R,m) be a d-dimensional Noetherian local domain. We always assume that
local domains are homomorphic images of regular local rings and assume that one
of two conditions in Theorem 2.1 is satisfied.

Further, in this paper, we assume that all modules are finitely generated. Let
G0(R) be the Grothendieck group of finitely generated R-modules.

We put

C(R) =

{
F.

∣∣∣∣ bounded complex of finite R-free modules,
Hi(F.) has finite length for any i

}
.

For F. ∈ C(R), we define an additive map

χF. : G0(R) −→ Z

by

χF.([M ]) =
∑
i

(−1)i�R(Hi(F.⊗M)).

We set

G0(R) = G0(R)/{c ∈ G0(R) | χF.(c) = 0 for any F. ∈ C(R)}.
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THE CONE SPANNED BY MAXIMAL COHEN-MACAULAY MODULES 943

Theorem 2.1 (Kurano, [16, Theorem 3.1 and Remark 3.5]). Assume that a Noe-
therian local domain R satisfies one of the following two conditions:

• R is an excellent ring such that R contains Q.
• R is essentially of finite type over a field, Z or a complete discrete valuation
ring.

Then, G0(R) is a finitely generated free Z-module.

If Spec(R) has a resolution of singularities or a regular alteration, then the above
theorem is still true for such R without assuming one of the two conditions above.

Let ρ(R) be the rank of G0(R). Note that ρ(R) is always positive, that is,

G0(R) �= 0. Indeed consider the Koszul complex K. of some system of parameters
a of R. Then χK.([R]) is equal to the Hilbert-Samuel multiplicity of R with respect
to the ideal generated by a (cf. [25, Chapter IV, Theorem 1]). So χK.([R]) �= 0.

This shows that [R] is not zero in G0(R) by definition (cf. [16], page 582). If d ≤ 2,
then ρ(R) = 1 (see [16, Proposition 3.7]). For any given d ≥ 3, there is no upper
bound for ρ(R) (see [16, Example 4.1]).

Proposition 2.2. The following conditions are equivalent:

(1) ρ(R) = 1.

(2) G0(R) = Z[R].
(3) For any F. ∈ C(R) and any R-module M with dimM < d, χF.([M ]) = 0.
(4) For any F. ∈ C(R) and any R-module M ,

χF.([M ]) = rankRM · χF.([R]).

Proof. It is easy to see (4) =⇒ (3) =⇒ (2) =⇒ (1).
We shall prove (1) =⇒ (4). Let K. be the Koszul complex of some system

of parameters a. Then by Serre’s theorem (cf. [25, Chapter IV, Theorem 1]),
χK.([M ]) = eI(M) where eI(−) denotes the Hilbert-Samuel multiplicity with re-
spect to the ideal I generated by a. Since eI(M) = rankRM · eI(R), we have

χK.([M ]) = rankRM · χK.([R]).

On the other hand, note that χK.([R]) = eI(R) �= 0. Therefore, [R] �= 0 in G0(R)Q.

Thus G0(R)Q = Q[R] by the condition (1). We write [M ] = r[R] in G0(R)Q for

some rational number r. Thus for every F. ∈ C(R), χF.([M ]) = r · χF.([R]). In
particular,

r · χK.([R]) = χK.([M ]) = rankRM · χK.([R]).

This shows r = rankRM and [M ] = rankRM · [R] in G0(R)Q. Therefore, the

condition (4) is satisfied. �

Remark 2.3. Suppose F. ∈ C(R). Assume that F. is not exact and the length of F.
is d, that is,

F. : 0 → Fd → Fd1
→ · · · → F1 → F0 → 0.

Let M be a finitely generated R-module. By induction on the depth, we have
depth(M) = d − max{i|Hi(F. ⊗R M) �= 0}. If M is a maximal Cohen-Macaulay
module, then Hi(F.⊗R M) = 0 for i > 0. Thus,

χF.([M ]) = �(H0(F.⊗R M)) > 0.
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944 C-Y. JEAN CHAN AND KAZUHIKO KURANO

We think that cycles in G0(R)R represented by maximal Cohen-Macaulay mod-
ules are positive elements in a sense.

In this paper, Q≥0 (resp. R≥0) denotes the set of non-negative rational (resp.
real) numbers. Further, Q+ (resp. R+) denotes the set of positive rational (resp.
real) numbers.

Definition 2.4. Set

CCM (R) =
∑

M :MCM

R≥0[M ] ⊂ G0(R)R,

where M runs over all maximal Cohen-Macaulay R-modules in the above summa-
tion. We call it the CM (Cohen-Macaulay) cone of R. Let CCM (R)− be the closure

of CCM (R) in G0(R)R with respect to the usual topology on the Euclidean space

Rρ(R).
The CM cone CCM (R) and its closure CCM (R)− are convex cones by definition.

The authors do not have an example where CCM (R) is a proper subset of its closure.
(We know that CCM (R)− is a strongly convex cone by a recent result due to Dao
and Kurano [7]. We do not need this result in this paper.)

Set

Nef(R) = {c ∈ G0(R)R | χF.(c) ≥ 0 for any F. ∈ C(R) of length d}.

We call it the nef (numerically effective) cone of R.

Lemma 2.5. Let R be a Cohen-Macaulay local domain.

(1) Let c be in
∑

M :MCM Q≥0[M ]. Then, there exist a positive integer n and a
maximal Cohen-Macaulay module M such that

nc = [M ] in G0(R)R.

(2) Let c be an element in CCM (R). For any open subset U of G0(R)R con-
taining c,

U ∩
∑

M :MCM

Q≥0[M ] �= ∅.

(3)

CCM (R) ∩G0(R)Q ⊂
∑

M :MCM

Q≥0[M ] ⊂ G0(R)R

is satisfied.
(4)

CCM (R) ⊂ CCM (R)− ⊂ Nef(R) ⊂ G0(R)R.

(5)

Nef(R) ∩ −Nef(R) = {0}.
(6) If R is of finite Cohen-Macaulay representation type, then

CCM (R) = CCM (R)−.

(7) There exists an open set U of G0(R)R such that [R] ∈ U ⊂ CCM (R).
(8)

Int(CCM (R)−) ⊂ CCM (R).
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Proof. It is easy to see (1).
Here, we shall prove (2). Put c =

∑
i ri[Mi], where ri ∈ R+ and Mi is a maximal

Cohen-Macaulay module for each i. We choose r′i ∈ Q+ sufficiently near ri for each
i. Then

∑
i r

′
i[Mi] is in U .

We shall prove (3). It is sufficient to show that, for a finite number of maximal
Cohen-Macaulay modules M1, . . . , Ms,

s∑
i=1

R≥0[Mi] ∩G0(R)Q ⊂
s∑

i=1

Q≥0[Mi]

in G0(R)R.
Let c =

∑
i hi[Mi] (hi ∈ R+) be in the left-hand side in the above. First, remark

that
s∑

i=1

R[Mi] ∩G0(R)Q =

s∑
i=1

Q[Mi].

Therefore,

c =
s∑

i=1

qi[Mi]

for qi ∈ Q (i = 1, . . . , s). Here, we put

W = {(α1, . . . , αs) ∈ Qs |
∑
i

αi[Mi] = 0} ⊂ Qs.

Then,

(h1 − q1, . . . , hs − qs) ∈ W ⊗Q R.

Therefore, there exists (β1, . . . , βs) ∈ W sufficiently near (h1 − q1, . . . , hs − qs).
Then,

c =
s∑

i=1

(qi + βi)[Mi]

where qi + βi ∈ Q+ for i = 1, . . . , s.
(4) immediately follows from Remark 2.3.
We shall prove (5). Let c ∈ Nef(R) ∩ −Nef(R). For F. ∈ C(R) of length d, we

have χF.(c) ≥ 0 and χF.(−c) ≥ 0. Thus, we have χF.(c) = 0. By Proposition 2 in
[23], the set of complexes of length d generates the Grothendieck group of C(R).
Therefore, c is numerically equivalent to 0.

(6) is easy.
Next, we shall prove (7). Let T1, . . . , Tρ be torsion R-modules such that

• {[T1], . . . , [Tρ−1], [R]} is a basis of the Q-vector space G0(R)Q, and

• [T1] + · · ·+ [Tρ−1] + [Tρ] = 0 in G0(R)Q.

Let Mi be the k-th sygyzy of Ti, where k is an even integer bigger than d. Then,
Mi is a maximal Cohen-Macaulay module such that

[Mi] = (rankRMi)[R] + [Ti]

in G0(R)Q. Then, we have

[M1] + · · ·+ [Mρ−1] + [Mρ] =

(∑
i

rankRMi

)
[R]
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946 C-Y. JEAN CHAN AND KAZUHIKO KURANO

in G0(R)Q. By the above equations,

{[M1], . . . , [Mρ−1], [Mρ]}

is a basis of the R-vector space G0(R)R. We know that [R] is in the interior of the
cone spanned by [M1], . . . , [Mρ−1], [Mρ].

Lastly, we shall prove (8). Suppose that 0 �= c ∈ Int(CCM (R)−). There ex-
ists an open neighborhood U of c such that U is a subset of CCM (R)−. Choose

e1, . . . , eρ−1 ∈ G0(R)R such that {e1, . . . , eρ−1, c} is an R-basis of G0(R)R. Tak-
ing ei’s small enough, we may assume c + ei ∈ U for i = 1, . . . , ρ − 1, and
c − e1 − · · · − eρ−1 ∈ U . We put si = c + ei for i = 1, . . . , ρ − 1 and sρ =
c− e1 − · · · − eρ−1. Then s1, . . . , sρ are in U such that

s1 + · · ·+ sρ = ρ · c

in G0(R)R, and {s1, · · · , sρ−1, sρ} is a basis of the R-vector space G0(R)R. Each
point in U is the limit of a sequence in CCM (R). Therefore, there exist s′1, . . . , s

′
ρ

such that

• s′1, . . . , s
′
ρ ∈ CCM (R),

• {s′1, . . . , s′ρ} is a basis of the R-vector space G0(R)R, and
• c is in the cone spanned by s′1, . . . , s

′
ρ.

Hence c is in CCM (R). �

Example 2.6. Let

R = k[x, y, z, w](x,y,z,w)/(xy − zw).

Then,

{R,P,Q}
is the set of isomorphism classes of indecomposable maximal Cohen-Macaulay mod-
ules (see Yoshino [27]), where P = (x, z), Q = (x,w). In this case, ρ(R) = 2 and

CCM (R) = CCM (R)− = R≥0[P ] + R≥0[Q] ⊂ Nef(R).

Remark 2.7 (Riemann-Roch theory). We have an isomorphism of Q-vector spaces

G0(R)Q
τR−→ A∗(R)Q =

d⊕
i=0

Ai(R)Q

as in [9] and [22]. Then, we have Ad(R)Q = Q[Spec(R)] and pdτR([M ]) = rankRM ·
[Spec(R)] where pd is the projection A∗(R) → Ad(R).

Put τR([R]) = cd + cd−1 + · · ·+ c0, where ci ∈ Ai(R)Q. Then,

(1) cd = [Spec(R)].
(2) If R is a complete intersection, τR([R]) = cd.
(3) If R is Cohen-Macaulay,

τR([ωR]) = cd − cd−1 + cd−2 − cd−3 + · · · ,

where ωR is the canonical module of R.
(4) If R is Gorenstein,

cd−1 = cd−3 = cd−5 = . . . = 0.
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THE CONE SPANNED BY MAXIMAL COHEN-MACAULAY MODULES 947

(5) IfR is normal, we have an isomorphism Ad−1(R) � Cl(R) by [Spec(R/I)] 
→
−cl(I), where cl(I) denotes the isomorphism class of a divisorial ideal I.
Then, we have

cd−1 = −cl(ωR)

2
.

(6) Localization of Galois extension of a regular local ring satisfies τR([R]) = cd.

As in [16], we can define Ai(R) such that the following diagram is commutative:

(2.1)

G0(R)Q
τR−→ A∗(R)Q

↓ ↓
G0(R)Q

τR−→ A∗(R)Q
↓ ↓

G0(R)R
τR−→ A∗(R)R

Definition 2.8. We say that R-module M is an R-test module if the following two
conditions are satisfied:

(1) M is a non-zero maximal Cohen-Macaulay module.

(2) τR([M ]) = rankR M · [Spec(R)] in A∗(R)Q.

The above condition (2) is equivalent to τR([M ]) ∈ Ad(R)Q.

The definition of test modules here is a little different from that in [14].
For F. ∈ C(R), the Dutta multiplicity (limit multiplicity) is defined to be

χ∞(F.) = χF.(τ
−1
R ([Spec(R)])).

If M is an R-test module and F. is a complex in C(R) of length d, then

(2.2) χ∞(F.) =
1

rankRM
χF.([M ]) =

1

rankRM
�R(H0(F.⊗R M)) > 0.

For a non-exact complex in C(R) of length d, χ∞(F.) is positive if R contains a field
([21], [18], [14]). Positivity of χ∞(F.) for a non-exact complex in C(R) of length
d is an open question for the mixed characteristic case. By (2.2), this question is
true for R which possesses a test module.
Remark 2.9.

A local ring R has a test module if and only if

(2.3) τR
−1([Spec(R)]) ∈ CCM (R)

as follows. The key point is that τR
−1([Spec(R)]) is inG0(R)Q by the commutativity

of the diagram (2.1). If (2.3) is satisfied, then we have

τR
−1([Spec(R)]) ∈ CCM (R) ∩G0(R)Q ⊂

∑
M :MCM

Q≥0[M ]

by Lemma 2.5 (3). Then, by Lemma 2.5 (1), we know the existence of R-test
modules.

Example 2.10. Let R be a Noetherian local domain of dimension d. Suppose that
R contains an excellent regular local ring S, and let A be the integral closure of S
in R. We assume that A is a finitely generated S-module, and R coincides with
AP for some prime ideal P of A. (We remark that such S exists if R is complete
or essentially of finite type over a field.)
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948 C-Y. JEAN CHAN AND KAZUHIKO KURANO

When the characteristic of S is positive, we further assume that S is F-finite.
Let L be a finite dimensional normal extension of Q(S) containing Q(A) where
Q(S) and Q(A) denote the field of fractions of S and A respectively. Let B be the
integral closure of S in L. Since S is excellent, B is a finitely generated A-module.
Thus B ⊗A R is a finitely generated R-module.

(1) Applying the method in [15], we obtain

τR([B ⊗A R]) ∈ Ad(R)Q,

that is,

[B ⊗A R] = rankR(B ⊗A R) · τ−1
R ([Spec(R)])

in G0(R)Q. Therefore, if B ⊗A R is a Cohen-Macaulay ring, then B ⊗A R
is an R-test module.

(2) Put G = AutQ(S)(L). Assume that N is a maximal Cohen-Macaulay B-
module. For each g ∈ G, we give another B-module structure to N by

B ×N −→ N
(b, n) 
→ g(b)n.

We denote this B-module by gN . We put

M =
⊕
g∈G

gN.

Then, we have

[M ] = rankA(M) · τ−1
A ([Spec(A)])

in G0(A)Q. Changing the base regular scheme using Lemma 4.1 (c) in [15],
we obtain

[M ⊗A R] = rankR(M ⊗A R) · τ−1
R ([Spec(R)])

in G0(R)Q; therefore M ⊗A R is an R-test module.

Remark 2.11. (1) If any local ring has a test module, then a conjecture (a posi-
tivity conjecture of Dutta multiplicity) is true (see (2.2), [14, Conjecture 3.3
and Proposition 4.3]).

(2) Let R be a complete local domain. If the small Cohen-Macaulay conjecture
is true, then R has a test module (see Example 2.10 and [14, Theorem 1.3]).

(3) Even if R is a Gorenstein ring, we do not know whether R has a test module
or not. If R is a complete intersection, then R itself is an R-test module.

The following is the main theorem of this section. We denote by pi the projection

A∗(R)R =

d⊕
i=0

Ai(R)R → Ai(R)R.

Theorem 2.12. Let (R,m) be a Cohen-Macaulay local domain. Consider the
following conditions:

(i) τR
−1([Spec(R)]) ∈ Int(CCM (R)−).

(ii) R has a test module which contains R as a direct summand.

(iii) For i = 0, 1, . . . , d− 1, piτR(CCM (R)) = Ai(R)R.

(iv) For i = 0, 1, . . . , d− 1, piτR(CCM (R)−) = Ai(R)R.
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THE CONE SPANNED BY MAXIMAL COHEN-MACAULAY MODULES 949

Then, we have

(i) ⇐⇒ (ii) =⇒ (iii) ⇐⇒ (iv).

If R is F-finite of characteristic p > 0 and R/m is algebraically closed, then the
above four conditions are equivalent to each other.

Proof. (i) =⇒ (ii). There exists a positive integer n such that

nτR
−1([Spec(R)])− [R] ∈ Int(CCM (R)−) ∩G0(R)Q ⊂ CCM (R) ∩G0(R)Q

by Lemma 2.5 (8). By Lemma 2.5 (1), (3), there exists a maximal Cohen-Macaulay
module M such that

(2.4) [R] + [M ] = n′τR
−1([Spec(R)])

for some n′ > 0.
(ii) =⇒ (i). Let N0 be a module over R such that N = R⊕N0 is a test module.

Let M = N0 ⊕ N . Then M is a maximal Cohen-Macaulay module, and we have
an equality like (2.4) in which n′ = 2 rankR N . Since [R] ∈ Int(CCM (R)−) by
Lemma 2.5 (7) and [M ] ∈ CCM (R), [R⊕M ] is also in Int(CCM (R)−).

(iii) =⇒ (iv) is trivial.
(iv) =⇒ (iii). Since

piτR(CCM (R)−) ⊂ (piτR(CCM (R)))−,

we have (piτR(CCM (R)))− = Ai(R)R. Note that piτR(CCM (R)) is a cone in

Ai(R)R. Since the convexity is preserved under τR and the projection pi, if

piτR(CCM (R)) �= Ai(R)R, then it must be contained in a closed half-space, and

so must its closure. This contradicts the above fact (piτR(CCM (R)))− = Ai(R)R
resulted from the condition (iv). Hence piτR(CCM (R)) = Ai(R)R.

(i) =⇒ (iii). Remark that

piτR(CCM (R)) ⊃ piτR(Int(CCM (R)−)) � pi([Spec(R)]) = 0

if i < d. Since piτR is an open map, piτR(Int(CCM (R)−)) contains an open neigh-

bourhood of 0. Then, we have piτR(CCM (R)) = Ai(R)R since piτR(CCM (R)) is a

cone in Ai(R)R.
Now, we shall prove (iii) =⇒ (i) in the case where R is F-finite of characteristic

p > 0 and R/m is algebraically closed.

Step 1. First we want to show τR
−1([Spec(R)]) ∈ CCM (R)−. We put τR([R]) =

cd + cd−1 + · · ·+ c0, where ci ∈ Ai(R)Q.

G0(R)R
τR−→ A∗(R)R =

⊕d
i=0 Ai(R)R

[R] ←→ cd + cd−1 + · · ·+ c0

[R
1
pe ] ←→ pdecd + p(d−1)ecd−1 + · · ·+ p0ec0.

Therefore

1

pde
[R

1
pe ] = τR

−1

(
cd +

1

pe
cd−1 + · · ·+ 1

pde
c0

)
∈ CCM (R).

Take the limit. Then, we have

τR
−1([Spec(R)]) = τR

−1(cd) = lim
e→∞

1

pde
[R

1
pe ] ∈ CCM (R)−.
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Step 2. We shall show τR
−1([Spec(R)]) ∈ Int(CCM (R)−).

Assume that τR
−1([Spec(R)]) is in the boundary of the cone CCM (R)−. Then

[SpecR] is in the boundary of the image of the cone under τR. If ρ(R) = 1, then
it can never happen. Therefore we may assume that ρ(R) > 1. For any R-module
M ,

τR([M ]) = rankR M [Spec(R)] + (lower dimensional terms).

Therefore, τR(CCR(R)−) �= A∗(R)R. Note that τR(CCM (R)−) is a convex cone
since τR is an R-linear map. Thus there exists a hyperplane through the origin
that contains the boundary possessing [Spec(R)]. Indeed such a hyperplane is a
supporting hyperplane of the cone τR(CCM (R)−); namely, there exists a vector
v normal to the hyperplane such that the inner product 〈v,u〉 is non-negative for

every u in τR(CCR(R)−). Let ξ be the projection of A∗(R)R onto the line generated
by v. Then

ξ : A∗(R)R −→ R

is a non-zero R-linear map with the properties

(2.5)

{
ξ([Spec(R)]) = 0,
ξτR(CCM (R)−) ⊂ R≥0.

Since Ad(R)R = R[Spec(R)], we have ξ(Ad(R)R) = 0. Since ξ �= 0, we can choose
0 ≤ j < d such that

(2.6)

{
ξ(Ai(R)R) = 0 for i = j + 1, j + 2, . . . , d,

ξ(Aj(R)
R
) �= 0.

Therefore, ξ(Aj(R)
R
) = R. Since pjτR(CCM (R)) = Aj(R)

R
by the condition (iii),

we have

R = ξpjτR(CCM (R)) =
∑

M :MCM

R≥0ξpjτR([M ]).

Therefore, there exists a maximal Cohen-Macaulay module N such that

(2.7) ξpjτR([N ]) < 0.

Set

τR([N ]) = sd + sd−1 + · · ·+ s0,

where si ∈ Ai(R)Q. By (2.7), we have

(2.8) ξ(sj) < 0.

Then,

τR([F
e(N)]) = pdesd + p(d−1)esd−1 + · · ·+ p0es0.

By the assumption (2.6), we have

ξτR([F
e(N)]) = pjeξ(sj) + p(j−1)eξ(sj−1) + · · ·+ p0eξ(s0).

Since (2.8), we know

ξτR([F
e(N)]) < 0

for a sufficiently large e. Since F e(N) is Cohen-Macaulay,

ξτR([F
e(N)]) ∈ ξτR(CCM (R)) ⊂ R≥0

by (2.5). This is a contradiction. �
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For a positive integer �, we define

ψ� : A∗(R)R −→ A∗(R)R

to be
ψ�(sd + sd−1 + · · ·+ s0) = �dsd + �d−1sd−1 + · · ·+ �0s0,

where si ∈ Ai(R)R for i = 0, 1, . . . , d.
If there exists � ≥ 2 such that

ψ� (τR(CCM (R))) ⊂ τR(CCM (R)),

the conditions (i), (ii), (iii), (iv) in Theorem 2.12 are equivalent to each other
without assuming that R is of positive characteristic.

If R is of characteristic prime p, then

ψp (τR(CCM (R))) ⊂ τR(CCM (R)).

Therefore, it is natural to ask the following for an arbitrary Cohen-Macaulay
local domain:

Question 2.13. Is there an integer � ≥ 2 such that

ψ� (τR(CCM (R))) ⊂ τR(CCM (R))?

3. Examples of various Hilbert-Kunz functions

In the rest of this paper, we shall prove Theorem 1.1 in the introduction.
We need the following lemma.

Lemma 3.1. Let d be a positive integer, and p be a prime number. Then, there
exists a ring A of characteristic p which satisfies the following conditions:

• A is a d-dimensional F -finite Cohen-Macaulay normal local domain and
the residue class field of A is algebraically closed.

• Ai(A)Q = Ai(A)Q =

{
Q (d2 < i ≤ d)
0 (otherwise)

.

• There exists a maximal Cohen-Macaulay A-module M such that
τA([A ⊕ M ]) ∈ Ad(A)Q; that is, A ⊕ M is an A-test module containing
A as a direct summand.

The above lemma will be proven in the next section. In this section, using
Lemma 3.1, we shall prove Theorem 1.1.

Let A be a ring satisfying three conditions in Lemma 3.1.

Step 1. We set
{i1, i2, . . . , it} = {i | εi �= 0}.

In Step 1, we shall show that there exists aik ∈ Aik(A)Q for k = 1, 2, . . . , t, and a
finite free A-complex F. of length d with support at the maximal ideal m such that

ch(F.)(aik) �= 0

for all k = 1, 2, . . . , t.

Recall that εj = 0 if j ≤ d
2 . Then, by the assumption on the ring A, Aik(A)Q = Q

for k = 1, 2, . . . , t. By the definition of Ai(A)Q (see [16]), there exist aik ∈ Aik(A)Q

and a finite free A-complex F(k). of length d with support at the maximal ideal m
such that

ch(F(k).)(aik) �= 0
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for k = 1, 2, . . . , t. Here, we recall that since A is a Cohen-Macaulay local ring,
the Grothendieck group of bounded finite A-free complexes with support in {m}
is generated by free resolutions of modules of finite length and of finite projective
dimension (cf. Proposition 2 in [23]).

By induction, it is easy to show that there exist positive integers n1, n2, . . . , nt

such that

F. = F(1).
⊕n1 ⊕ F(2).

⊕n2 ⊕ · · · ⊕ F(t).
⊕nt

satisfies the required condition.

Step 2. Take the complex F. that we have constructed in Step 1.

In Step 2, we shall show that there exists a maximal Cohen-Macaulay A-module
N and positive rational numbers β0, β1, . . . , βd such that

ch(F.)(τA([A⊕N ])i) = εiβi

for i = 0, 1, . . . , d. Here, τA([A ⊕ N ])i is the element in Ai(A)Q such that

τA([A⊕N ]) =
∑d

i=0 τA([A⊕N ])i.
By the induction on j, we shall prove the following: There exist a maximal

Cohen-Macaulay A-module N and positive rational numbers βd−j , βd−j+1, . . . , βd

such that

ch(F.)(τA([A⊕N ])i) = εiβi

for i = d− j, d− j + 1, . . . , d.
Consider the case j = 0. Here, recall that F. is a bounded finite A-free complex

of length d with support in {m}. Set N = A. Then, τA([A⊕A])d = 2[Spec(A)] and

ch(F.)([Spec(A)]) > 0

by a theorem of Roberts [21]. Here, recall that εd = 1. Therefore, N = A and
βd = ch(F.)(2[Spec(A)]) satisfy the required condition.

Next suppose 0 ≤ j < d. We assume that there exists a maximal Cohen-
Macaulay A-module N ′ and positive rational numbers β′

d−j , β
′
d−j+1, . . . , β

′
d such

that

ch(F.)(τA([A⊕N ′])i) = εiβ
′
i

for i = d− j, d− j + 1, . . . , d.
Compare the rational number ch(F.)(τA([A⊕N ′])d−j−1) with εd−j−1.
If there exists a positive rational number β′

d−j−1 such that

ch(F.)(τA([A⊕N ′])d−j−1) = εd−j−1β
′
d−j−1,

we have nothing to prove. (Here, if d− j − 1 ≤ d
2 , both ch(F.)(τA([A⊕N ′])d−j−1)

and εd−j−1 are 0. Therefore, we have only to set β′
d−j−1 = 1 in this case.)

We assume that there does not exist a positive rational number β′
d−j−1 satisfying

the above condition.

(*) If εd−j−1 = 0, we set b = −τA([A ⊕ N ′])d−j−1. If εd−j−1 �= 0, we choose
b ∈ Ad−j−1(A)Q such that the sign of ch(F.)(b) is the same as that of
εd−j−1.
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Here, remark that by the construction of F. in Step 1, we can choose an element b
satisfying the above condition. We shall show the following claim:

Claim 3.2. There exists a maximal Cohen-Macaulay A-module L and a positive
integer n such that

τA([L]) = rankA(L)[Spec(A)] + nb+ (lower dimensional terms).

We prove this claim.
Since b ∈ Ad−j−1(A)Q and d − j − 1 < d, there exist (not necessarily distinct)

prime ideals P1, . . . , Ps of height j + 1 such that

nb = [Spec(A/P1)] + · · ·+ [Spec(A/Ps)]

in Ad−j−1(A)Q for some positive integer n.
Consider the exact sequence

0 → N1 → F2u−1 → · · · → F1 → F0 → A/P1 ⊕ · · · ⊕ A/Ps → 0,

where F0, F1, . . . , F2u−1 are finitely generated A-free modules and u is a large
enough number such that N1 is a maximal Cohen-Macaulay A-module.

Then, we have

[N1] = [A/P1 ⊕ · · · ⊕A/Ps]− [F0] + [F1]− · · ·+ [F2u−1]

= [A/P1 ⊕ · · · ⊕A/Ps] + rankA(N1)[A]

in G0(A)Q.
By the assumption, there exists a maximal Cohen-Macaulay A-module M such

that τA([A⊕M ]) ∈ Ad(A)Q. Adding rankA(N1)[M ] to both sides, we obtain

[N1] + rankA(N1)[M ] = [A/P1 ⊕ · · · ⊕A/Ps] + rankA(N1)[A⊕M ]

in G0(A)Q.
Then, we have

τA([N1 ⊕M⊕rankA(N1)])

= rankA(N1 ⊕M⊕rankA(N1))[Spec(A)] + nb+ (lower dimensional terms)

since

τA([A/P1 ⊕ · · · ⊕A/Ps]) = nb+ (lower dimensional terms)

by the top term property (Theorem 18.3 (5) in [9]). Thus, N1⊕M⊕rankA(N1) satisfies
the condition on L in Claim 3.2. We have completed the proof of Claim 3.2.

Here, we set

N = A⊕e−1 ⊕N ′⊕e ⊕ L⊕f

for some positive integers e and f , and a maximal Cohen-Macaulay module L in
Claim 3.2. Then,

τA([A⊕N ])d = rankA(A⊕N)[Spec(A)] =
rankA(A⊕N)

rankA(A⊕N ′)
τA([A⊕N ′])d

and

τA([A⊕N ])i = eτA([A⊕N ′])i

for i = d− j, d− j + 1, . . . , d− 1. Therefore, we have

ch(F.)(τA([A⊕N ])d) = εdβd
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where

βd =
rankA(A⊕N)

rankA(A⊕N ′)
β′
d > 0,

and

ch(F.)(τA([A⊕N ])i) = εiβi

where

βi = eβ′
i > 0

for i = d− j, d− j + 1, . . . , d− 1.
On the other hand, we have

τA([A⊕N ])d−j−1 = eτA([A⊕N ′])d−j−1 + fnb.

If εd−j−1 = 0, then we suppose e = fn. Then, τA([A ⊕ N ])d−j−1 = 0 by the
definition of b (see (*) above Claim 3.2). Thus, putting βd−j−1 = 1,

ch(F.)(τA([A⊕N ])d−j−1) = 0 = εd−j−1βd−j−1.

Next, assume that εd−j−1 �= 0. Consider the equality

ch(F.)(τA([A⊕N ])d−j−1) = e ch(F.)(τA([A⊕N ′])d−j−1) + fn ch(F.)(b).

Assume that f/e is big enough. Then the sign of the right-hand side is the same
as that of εd−j−1 by the definition of b (see (*) above Claim 3.2). Therefore, there
exists a positive rational number βd−j−1 such that

ch(F.)(τA([A⊕N ])d−j−1) = εd−j−1βd−j−1.

Step 3. Let F. and N be a complex and a maximal Cohen-Macaulay module as in
Step 2, respectively. Let R be the idealization A�N . Then, R is a d-dimensional
Cohen-Macaulay local ring.

Since ch(F.) is a bivariant class (Chapter 17 in [9]), we have the commutative
diagram

A∗(R/(m�mN))Q
ch(F.⊗AR)←− A∗(R)Q

↓ ↓
A∗(A/m)Q

ch(F.)←− A∗(A)Q

where the vertical maps are isomorphisms induced by finite morphisms Spec(R) →
Spec(A) and Spec(R/(m�mN)) → Spec(A/m). Then, we obtain

ch(F.⊗A R)(τR([R])i) = ch(F.)(τA([A⊕N ])i) = εiβi

for i = 0, 1, . . . , d. Since R is a Cohen-Macaulay local ring of dimension d, F.⊗A R
is a finite free resolution of an R-module Q of finite length by [23]. Let C be the
category of R-modules of finite length and finite projective dimension.

Then, by Kumar’s method (cf. Lemma 9.10 in [26]), there exist maximal primary
ideals I1, . . . , I�, I of R of finite projective dimension such that

• Ii is an ideal generated by a maximal regular sequence of R for i = 1, . . . , �.

• [Q] +
∑�

i=1[R/Ii] = [R/I] in K0(C).
Let F : R → R be the Frobenius map. It is a finite morphism since A is F -finite.

We denote by FnR the R-module R whose R-module structure is given by

r × a := rp
n

a

for r ∈ R and a ∈ FnR.

Licensed to Central Michigan Univ. Prepared on Mon Feb 18 16:36:34 EST 2019 for download from IP 141.209.171.192.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE CONE SPANNED BY MAXIMAL COHEN-MACAULAY MODULES 955

By the Riemann-Roch formula,

τR([FnR]) =

d∑
i=0

pinτR([R])i.

By the local Riemann-Roch formula, we have

χF.⊗AR(FnR) = ch(F.⊗A R)(
d∑

i=0

τR([FnR])i)

= ch(F.⊗A R)(

d∑
i=0

pinτR([R])i)

=

d∑
i=0

ch(F.⊗A R)(τR([R])i)p
in

=
d∑

i=0

εiβip
in.

On the other hand, we have

χF.⊗AR(FnR) = χ(Q, FnR)

= χ(R/I, FnR)−
�∑

i=1

χ(R/Ii, FnR)

= �R(R/I [p
n])−

�∑
i=1

�R(R/I
[pn]
i )

since FnR is a Cohen-Macaulay R-module and the residue class field of R is alge-
braically closed.

We set Ii = (ai1, . . . , aid), where ai1, . . . , aid forms a maximal R-regular se-
quence. Then,

�R(R/I
[pn]
i ) = �R(R/(ap

n

i1 , . . . , a
pn

id )) = pdn�R(R/(ai1, . . . , aid)).

Thus, we have

�R(R/I [p
n]) =

(
εdβd +

�∑
i=1

�R(R/(ai1, . . . , aid))

)
pdn +

d−1∑
i=0

εiβip
in.

Remark that

εdβd +
�∑

i=1

�R(R/(ai1, . . . , aid)) = eHK(I) > 0.

Putting α = eHK(I), we know that I satisfies the required condition. We have
completed the proof of Theorem 1.1.

In Theorem 1.1, the coefficients of the polynomial are assumed to be zero in
the terms of degree d/2 or lower. This assumption is made due to the fact that

Ai(R)Q = 0 for i ≤ d/2 (for a homogeneous coordinate ring R of a smooth projective

variety) if the Grothendieck’s standard conjecture holds (cf. [16, Remark 7.12]).

There is no known example where Ai(R)Q does not vanish for some i ≤ d/2.
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Therefore, it is natural to ask the following:

Conjecture 3.3. Let R be a d-dimensional Cohen-Macaulay local ring of charac-
teristic p with perfect residue class field. Let I be a maximal primary ideal of R of
finite projective dimension. We set

�R(R/I [p
n]) =

d∑
i=0

βip
in

for n > 0. Then, if i ≤ d/2, βi = 0.

4. Proof of Lemma 3.1

This section is devoted to proving Lemma 3.1.
We use the following basic properties on singular Riemann-Roch maps.

Fact 4.1. Let X be a d-dimensional projective variety over k. Then, we have an
isomorphism

G0(X)Q
τX−→ A∗(X)Q.

Let M be a coherent OX -module. Put

τX([M]) = sd + sd−1 + · · ·+ s0,

where si ∈ Ai(X)Q.
Let D be a very ample divisor on X. Put S = k[x0, x1, . . . , xn], where S is a

graded polynomial ring with deg(xi) = 1 for i = 0, 1, . . . , n. Let

X = Proj(B)
i
↪→ Pn = Proj(S)

be the embedding corresponding to D, where we have

S � B = k[B1] ⊂
⊕
m

H0(X,OX(mD)).

Here, B1 denotes the homogeneous component of the graded ring B of degree 1. We
note that B is standard graded; that is, B is a graded ring generated by elements
of degree 1 over B0 = k.

(1) We have a commutative diagram:

G0(X)Q
τX−→ A∗(X)Q

i∗ ↓ ↓ i∗
G0(P

n)Q
τPn−→ A∗(P

n)Q

Put
M =

⊕
m

H0(X,M⊗OX
OX(mD)).

Then, M is a graded
⊕

m H0(X,OX(mD))-module. We have

τPn([M̃ ]) = τPni∗([M]) = i∗τX([M]) = i∗(sd) + i∗(sd−1) + · · ·+ i∗(s0).

Put
Hi = Proj(S/(xi+1, . . . , xn)).

Then, we have
Ai(P

n)Q = Q[Hi]

for i = 0, 1, . . . , n. Let �i be a rational number such that

i∗(si) = �i[Hi]
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THE CONE SPANNED BY MAXIMAL COHEN-MACAULAY MODULES 957

for i = 0, 1, . . . , d. Then, we have

PM (t) = dimk Mt =
�d
d!
td +

�d−1

(d− 1)!
td−1 + · · ·+ �0

0!
t0

for t � 0. (See Proposition on p. 3005 in Chan-Miller [4], Proposition 4.1
in Roberts-Singh [24].)

(2) Let m be the homogeneous maximal ideal of B. We have the following
commutative diagram:

G0(X)Q
τX−→ A∗(X)Q

α ↓ ↓ β

G0(B)Q
τB−→ A∗(B)Q

γ ↓ ↓ δ

G0(Bm)Q
τBm−→ A∗(Bm)Q

The horizontal maps are isomorphisms. Here, γ and δ are isomorphisms
induced by localization B → Bm. For a graded B-module M , we have

α([M̃ ]) = [M ].

Here, we remark that α is well-defined since [T ] = 0 in G0(B)Q for a graded
B-module T whose homogeneous graded pieces are zero except for finitely
many degrees. The map β is the sum of the maps

Ai(X)Q
β
� Ai(X)Q

c1(D)Ai+1(X)Q
= Ai+1(B)Q,

where this map is given by

[Proj(B/P )] 
→ [Spec(B/P )]

for each homogeneous prime ideal P with dimB/P > 0.
Thus, we obtain

τBm
([M ⊗B Bm]) = δβ(sd) + δβ(sd−1) + · · ·+ δβ(s0),

where δβ(si) ∈ Ai+1(Bm)Q. We refer the reader to Section 4 in [13] for
maps α, β, γ, δ.

Example 4.2. Set X = Pm×Pn. Let p1 and p2 be the first and second projections,
respectively. Assume m ≥ n ≥ 2.

Then, we have

G0(X)Q
τX−→ A∗(X)Q = Q[a, b]/(am+1, bn+1),

where

Am+n−c(X)Q =
⊕

i+j=c

Qaibj ,

and a = c1(p
∗
1OPm(1)) ∈ Am+n−1(X) and b = c1(p

∗
2OPn(1)) ∈ Am+n−1(X). We

put

OX(s, t) = p∗1OPm(s)⊗OX
p∗2OPn(t).

Put

f(x) =
x

1− e−x
.
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Then, we have

τX([OX(s, t)]) = ch(p∗1OPm(s))ch(p∗2OPn(t))td(Ω∨
X)

= ch(p∗1OPm(s))ch(p∗2OPn(t))td(p∗1Ω
∨
Pm)td(p∗2Ω

∨
Pn)

= esaf(a)m+1etbf(b)n+1.

Here, take a very ample divisor a + b ∈ Am+n−1(X). Then, the homogeneous
coordinate ring B is defined by all the 2-minors of the generic (m + 1) × (n + 1)-
matrix. In this case, the cycle in X corresponding to aibj is the closed subscheme
defined by the ideal generated by the entries in the top i rows and the left j columns.
Then, we have

G0(B)Q
τB−→ A∗(B)Q = Q[a, b]/(am+1, bn+1, a+ b) = Q[b]/(bn+1),

where we identify a with −b. Let P (resp. Q) be the ideals generated by the
elements in the first row (resp. the first column). Then, for s > 0 and t > 0,

[P (s)] = [P s] = α([OX(−s, 0)]),

[Q(t)] = [Qt] = α([OX(0,−t)]).

Here, for an ideal I, I(s) denotes the s-th symbolic power of I. Then,

τB([P
(s)]) = esbf(−b)m+1f(b)n+1 = f(−b)m+1−sf(b)n+1+s ∈ Q[b]/(bn+1),

τB([Q
(t)]) = f(−b)m+1e−tbf(b)n+1 = f(−b)m+1+tf(b)n+1−t ∈ Q[b]/(bn+1),

since eb = f(b)/f(−b). Here,

{P (m), P (m−1), . . . , P (1), B,Q(1), . . . , Q(n−1), Q(n)}
is the set of rank one maximal Cohen-Macaulay modules. It is easily verified calcu-
lating local cohomology modules of Segre products [10]. If there exist non-negative
integers q0, q1, . . . , qm+n satisfying

m+n∑
k=0

qk > 0 and

m+n∑
k=0

qkf(−b)1+kf(b)m+n+1−k = (
m+n∑
k=0

qk) + bn+1(· · · ),

then

(P (m))⊕q0 ⊕ · · · ⊕ (P (1))⊕qm−1 ⊕B⊕qm ⊕ (Q(1))⊕qm+1 ⊕ · · · ⊕ (Q(n))⊕qm+n

is a B-test module. If qm > 0, then it contains B as a direct summand.
The authors do not know whether a test module (having B as a direct summand)

exists or not in this case.

In order to prove Lemma 3.1, it is enough to show the following claim.

Claim 4.3. Let d be a positive integer and p a prime number. Let k be an alge-
braically closed field of characteristic p. If d is even, then we put

S = k[x0, x1, . . . , xd/2] and T = k[y0, y1, . . . , y(d/2)−1].

If d is odd, then we put

S = k[x0, x1, . . . , x(d−1)/2] and T = k[y0, y1, . . . , y(d−1)/2].
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We think that S and T are graded rings with deg(xi) = deg(yj) = 1 for each i and

j. Let � be a sufficiently large integer. We denote by S#T (�) the Segre product of
S and T (�), that is, S#T (�) =

⊕
m≥0(S#T (�))m with (S#T (�))m = Sm⊗k Tm� (see

[10]).1 Let A be the localization of S#T (�) at the homogeneous maximal ideal.
Then, the ring A satisfies the following conditions:

(1) The ring A is a d-dimensional F -finite Cohen-Macaulay normal local do-
main and the residue class field of A is algebraically closed.

(2) Ai(A)Q = Ai(A)Q =

{
Q (d2 < i ≤ d),
0 (otherwise).

(3) There exists a maximal Cohen-Macaulay A-module M such that
τA([A⊕M ]) ∈ Ad(A)Q.

If d is even, then we set m = d/2 and n = d/2 − 1. If d is odd, then we set
m = n = (d−1)/2. Let � be a positive integer. Then, a+ �b is a very ample divisor
on X = Pm × Pn. Put B = S#T (�).

Calculating local cohomologies of Segre products (see [10]), (1) will be easily
proved.

(2) will be proved by the method due to Roberts-Srinivas [23]. In fact, the ratio-
nal equivalence on cycles on X = Pm×Pn coincides with the numerical equivalence.
Put A = Bm. Then, by Theorem 7.7 in [16], we have isomorphisms

A∗(B)Q � A∗(A)Q � A∗(A)Q.

We know

Ai(B)Q =

{
Q (d/2 < i ≤ d),
0 (otherwise)

by [13].
In the rest, using Theorem 2.12, we shall prove (3). We shall prove that

(4.1) piτA(CCM (A)) = Ai(A)R for d/2 < i < d.

Here, we define

Nq =
⊕
s∈Z

H0(X,OX(q + s, �s))

and prove the following lemma:

Lemma 4.4. For any � > 0, Nq is a maximal Cohen-Macaulay B-module if −m ≤
q ≤ 0.

Proof. We have

Nq = S(q)#T (�).

Let m1 (resp. m2) be the homogeneous maximal ideal of S (resp. T (�)).
Then, Hi

m1
(S(q))s �= 0 if and only if

i = 0 and s ≥ −q

or
i = m+ 1 and s ≤ −q −m− 1.

Further, Hi
m2

(T (�))s �= 0 if and only if

i = 0 and s ≥ 0

1For a graded ring T , T (�) denotes the �-th Veronese subring of T . Please do not confuse it
with the symbolic power of ideals as in Example 4.2.

Licensed to Central Michigan Univ. Prepared on Mon Feb 18 16:36:34 EST 2019 for download from IP 141.209.171.192.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



960 C-Y. JEAN CHAN AND KAZUHIKO KURANO

or

i = n+ 1 and s ≤ −�n+1
� �.

Here �n+1
� � denotes the minimal integer which is larger than or equal to n+1

� . We
refer the reader to [10] for local cohomologies of Segre products. Therefore, Nq is
a maximal Cohen-Macaulay module if and only if{

−�n+1
� � < −q,

−q −m− 1 < 0.

It is equivalent to

−m− 1 < q < �n+ 1

�
�.

Therefore, if −m ≤ q ≤ 0, then Nq is a maximal Cohen-Macaulay module. �

We set

hm,q(x) = (x+ q +m)(x+ q +m− 1) · · · (x+ q + 1).

Consider the polynomials

hm,0(x) = (x+m)(x+m− 1) · · · (x+ 2)(x+ 1),

hm,−1(x) = (x+m− 1)(x+m− 2) · · · (x+ 1)x,

hm,−2(x) = (x+m− 2)(x+m− 3) · · ·x(x− 1),

...

hm,q(x) = (x+m+ q)(x+m+ q − 1) · · · (x+ 1 + q),

...

hm,−m(x) = x(x− 1)(x− 2) · · · (x− (m− 1)).

The following lemma will be used later.

Lemma 4.5. Suppose m ≥ 2 and m > u > 0. The set of the coefficients of xu in

hm,−1(x), hm,−2(x), . . . , hm,−m(x)

contains a negative value.

Proof. We shall prove it by induction on m.
Suppose m = 2. Then,

h2,−1(x) = (x+ 1)x = x2 + x,

h2,−2(x) = x(x− 1) = x2 − x.

Assume that m ≥ 2 and the assertion is true for m.
Suppose 1 < u < m+ 1. By the induction hypothesis, there exists −m ≤ q < 0

such that the coefficient of xu−1 in hm,q(x) is negative. If the coefficient of xu in
hm,q(x) is negative, the coefficient of xu in

hm+1,q(x) = (x+ q +m+ 1)hm,q(x)

is negative. If the coefficient of xu in hm,q(x) is non-negative, the coefficient of xu

in

hm+1,q−1(x) = hm,q(x)(x+ q)

is negative.
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Suppose u = 1. By the induction hypothesis, there exists −m ≤ q < 0 such that
the coefficient of x in hm,q(x) is negative. Remark that hm,q(0) = 0. Then, the
coefficient of x in

hm+1,q(x) = (x+ q +m+ 1)hm,q(x)

is negative. �

Consider

τX(OX(q, 0)) = eqaf(a)m+1f(b)n+1 ∈ A∗(X)Q = Q[a, b]/(am+1, bn+1).

Lemma 4.6. Suppose that v is an integer such that 1 ≤ v ≤ n.

(1) Assume v < m. Then, the set of the coefficients of av in

τX(OX(−m, 0)), τX(OX(−m+ 1, 0)), . . . , τX(OX(0, 0))

contains a positive value and a negative value.
(2) Assume v = m = n. Then, the coefficient of am in τX(OX(0, 0)) is positive.

The coefficient of am in τX(OX(−1, 0)) is zero. The coefficient of am−1b
in τX(OX(−1, 0)) is positive.

Proof. The coefficient of av in

eqaf(a)m+1f(b)n+1

is equal to the coefficient of av in

eqaf(a)m+1.

Since

τPm([OPm(q)]) = eqaf(a)m+1 ∈ Q[a]/(am+1),

the coefficient of av in

eqaf(a)m+1

is equal to

(4.2) (m− v)!
{
the coefficient of xm−v in the polynomial

(
x+q+m

m

)}
by Fact 4.1 (1). Furthermore, (4.2) is equal to

(m− v)!

m!
{the coefficient of xm−v in the polynomial hm,q(x)} .

It is easy to see that, for 0 < u < m, the coefficient of xu in hm,0(x) is positive.
Therefore, Lemma 4.6 (1) immediately follows from Lemma 4.5.

Assume that v = m = n. Since the constant term of hm,0(x) is positive, the
coefficient of am in

f(a)m+1f(b)m+1

is positive. Since the constant term of hm,−1(x) is zero, the coefficient of am in

e−af(a)m+1f(b)m+1

is zero. The coefficient of am−1b in

e−af(a)m+1f(b)m+1

is equal to {
the coefficient of am−1 in e−af(a)m+1

}
×
(
m+ 1

2

)
,
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where m+1
2 is the coefficient of b in f(b)m+1. The sign of the coefficient of am−1

in e−af(a)m+1 is the same as the sign of the coefficient of x in hm,−1(x), that is,
obviously positive. �

We return to the proof of Claim 4.3 (3) and take an ample divisor a + �b on
X = Pm × Pn for � > 0. Remark that S#T (�) is a homogeneous coordinate ring of
X under the embedding corresponding to a+ �b. We denote this ring simply by B.
Then the commutative diagram from Fact 4.1(2) with the current X is precisely

G0(X)Q
τX−→ A∗(X)Q = Q[a, b]/(am+1, bn+1)

α ↓ ↓ β

G0(B)Q
τB−→ A∗(B)Q = Q[a, b]/(am+1, bn+1, a+ �b) = Q[b]/(bn+1)

where β(a) = −�b.
Recall that

N0, N−1, . . . , N−m

are graded Cohen-Macaulay B-modules. Since Ai(A)R = R, in order to show (4.1),
it is enough to prove that, for v = 1, 2, . . . , n, the set of the coefficients of bv in

τB([N0]), τB([N−1]), . . . , τB([N−m])

contains a positive value and a negative value. Note that

τB([Nq]) = τBα(OX(q, 0)) = βτX(OX(q, 0)) = β
(
eqaf(a)m+1f(b)n+1

)
.

Here recall that the map

β : Q[a, b]/(am+1, bn+1) −→ Q[b]/(bn+1)

is given by β(asbt) = (−1)s�sbs+t. Thus, we have

β(
∑
s,t≥0

qsta
sbt) =

∑
s,t≥0

(−1)sqst�
sbs+t =

n∑
v=0

(

v∑
s=0

(−1)sqs,v−s�
s)bv.

If (−1)vqv0 > 0 (resp. (−1)vqv0 < 0), the coefficient of bv in the above is positive
(resp. negative) for � � 0.

First suppose 1 ≤ v ≤ n and v < m. By Lemma 4.6 (1), the set of coefficients
of bv in

β
(
f(a)m+1f(b)n+1

)
, β

(
e−af(a)m+1f(b)n+1

)
, . . . , β

(
e−maf(a)m+1f(b)n+1

)
contains a positive value and a negative value for � � 0.

Next suppose v = m = n. By Lemma 4.6 (2), the signs of the coefficients of bm

in

β
(
f(a)m+1f(b)m+1

)
and β

(
e−af(a)m+1f(b)m+1

)
are different for � � 0. We have completed the proof of Claim 4.3.
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