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Let A be the ring obtained by localizing the polynomial ring ��X� Y� Z�W� over a
field � at the maximal ideal �X� Y� Z�W� and modulo the ideal �XW − YZ�. Let ��� be
the ideal of A generated by X and Y . We study the module structure of a minimal
injective resolution of A/��� in detail using local cohomology. Applications include the
description of ExtiA�M�A/����, where M is a module constructed by Dutta, Hochster
and McLaughlin, and the Yoneda product of Ext∗A�A/����A/����.
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1. INTRODUCTION

In the category of modules over a commutative ring, injective and projective
modules are dual notions.To study cohomology properties of a module, we may
consider a minimal free resolution or a minimal injective resolution of the module.
The boundary maps of the former are given by matrices in terms of given basis. The
coboundary maps of the latter are discussed less extensively. In general, there are
no simple descriptions for injective resolutions. The subtlety comes partly from the
fact that there are no canonical ways to identify minimal injective modules (injective
hulls) for a given module, even though they are all isomorphic. On works regarding
concrete realizations of Grothendieck duality, one finds many natural injective hulls
with different guises for a given module. The difference of these injective hulls is
a part of the structure of the underlying module. From this viewpoint, injective
hulls for a given module are not unique, just as there are different vector spaces of
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3714 CHAN AND HUANG

the same dimension (for instance, a finite dimensional vector space and its dual).
Intriguing structures such as residues support this viewpoint since they arise from
isomorphisms between injective hulls.

Here is a typical example: Let R be a formal power series ring of n variables
over a field �. The nth local cohomology module of R supported at the maximal
ideal gives rise to an injective hull of �. The elements of this local cohomology
module have a concrete description using generalized fractions. As an R-module,
� has another injective hull consisting of the �-linear homomorphisms from R
to � annihilated by some power of the maximal ideal. Residues appear when an
explicit isomorphism between these two injective hulls is constructed. The reader is
referred to Huang (1995, 2000) for more details and further developments along this
direction.

The goal of our work is to develop a concrete means to study the structure
of injective resolutions of modules. It consists of two steps: constructing injective
modules explicitly and then describing the coboundary maps explicitly in a
resolution built up from the injective modules obtained in the previous step. The
goal has been achieved for modules related to residual complexes, which are of
particular interests due to their central role in Grothendieck duality theory. We
recall that residual complexes are build by injective hulls of the residue fields of
points on a scheme and resolve canonical modules in certain Cohen–Macaulay
cases. In Huang (2000), residual complexes are constructed concretely in a relatively
canonical way. The construction in Huang (2000) is local. One of its globalizations
gives rise to injective resolutions for the vector bundles on projective spaces (Huang,
2001). The injective resolutions obtained in Huang (2000, 2001) are for modules
(resp. sheaves of modules) whose structures (resp. local structures) are determined
completely by the underlying rings (resp. schemes). Not much is known in general
about concrete constructions of injective resolutions of nonflat modules.

Studies of the homology and cohomology modules from the viewpoint of
injective objects are often restricted to some subcategories of the category of
modules, such as the category of graded (or multigraded) modules (see for example
Goto and Watanabe, 1978; Miller, 2000; Miller and Sturmfels, 2005) or the category
of squarefree modules (Yanagawa, 2002). Injective resolutions in these smaller
categories drastically differ from those in the category of all modules. For instance,
a multigraded injective resolution of the polynomial ring ��X� Y� of two variables
over a field � consists of only four indecomposable multi-graded injective modules
(Miller and Sturmfels, 2005, Example 11.20). In the category of modules concerning
no gradings, a minimal injective resolution of ��X� Y� consists of infinitely many
indecomposable injective modules indexed by the prime ideals of ��X� Y� due
to its Gorenstein property (Matsumura, 1986, Theorem 18.8). Minimal injective
resolutions, especially those for modules over a local ring, are still full of mysteries
and are not possible to be deduced from graded cases. At the time when more
case studies of minimal injective resolutions are available, a general theory may be
developed for a larger class of modules. This paper serves as a first step towards
such direction by carrying out the above goal for a module related to an important
example in the discussions of several homological conjectures (c.f. Dutta et al., 1985;
Roberts, 1998, 13.2).

In this article, our study emphasizes the module structure of injective
resolutions rather than its category structure. More precisely, we would like
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MODULE STRUCTURE OF AN INJECTIVE RESOLUTION 3715

to construct explicitly an injective resolution of a given module and obtain its
cohomological information from the resolution. Let S be the polynomial ring
��X� Y� Z�W� over a field �. In this article, we consider the ring

A = S�X�Y�Z�W�/�XW − YZ�

and the ideal � of A generated by X� Y . For each prime ideal � of ��Z�W� contained
in � �= �Z�W�, we construct an injective hull E�A/��� X� Y�� of A/��� X� Y�. In the
sequel, we write E�A/��� X� Y�� simply as E���. In terms of generalized fractions
(defined in Definition 2.1) of elements of E���, our main result describes a minimal
injective resolution

E�0� → ⊕
��=�

E��� → ⊕
��=�0�

E��� → E���2 → E���2 → E���2 → · · ·

of A/�. According to the authors’ knowledge, this is the first detailed analysis of an
injective resolution for a module which does not come from duality theory.

As applications, we read explicitly:

• Local cohomology modules Hi
I �A/�� of A/� supported at an ideal I of A;

• An isomorphism HomA��/�
2� A/�� → Ext1A�A/�� A/�� of normal modules;

• The product of the Yoneda algebra Ext∗A�A/�� A/��;• ExtiA�M�A/��, where M is the A-module constructed by Dutta et al. (1985).

The article is organized as follows: In Section 2, we recall the notion of
generalized fractions which describe elements in certain top local cohomology
modules. Technical properties are prepared for latter use. In Section 3, we construct
injective hulls in terms of generalized fractions. These injective hulls are building
blocks for our injective resolution. In Section 4, we define homomorphisms for these
injective hulls and show that they give rise to a minimal injective resolution. In
Section 5, we carry out the computations for the applications listed in the previous
paragraph.

2. GENERALIZED FRACTIONS

Our description of injective modules and coboundary maps of an injective
resolution is based on local cohomology modules and the representation of their
elements by generalized fractions. We recall the definition and some properties
of generalized fractions and refer the details to Huang (1995, Chapter 2). Let
R be a Noetherian ring and I be an ideal of R generated up to radical by n
elements x1� � � � � xn and another ideal J . Let N be an R-module, whose elements are
annihilated by a power (depending on the element) of J . Elements of the nth local
cohomology module Hn

I �N� of N supported at I can be described by the following
exact sequence

n⊕
i=1

Nx1���x̂i ���xn

	→ Nx1���xn


→ Hn
I �N� → 0� (1)
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3716 CHAN AND HUANG

where 	 is the map given by

�

�x1 � � � x̂i � � � xn�
s
�→ �−1�ixsi�

�x1 � � � xn�
s

for � ∈ N and s ≥ 0.

Definition 2.1. A generalized fraction[
�

x
i1
1 � � � � � x

in
n

]
∈ Hn

I �N��

where � ∈ N and i1� � � � � in ∈ �, is the image of xs−i1
1 � � � xs−in

n �/�x1 � � � xn�
s under the

map 
 in (1) for a sufficiently large s. � is called the numerator of the generalized
fraction and x

i1
1 � � � � � x

in
n are called the denominators of the generalized fraction.

If some ij is less than one, then the above generalized fraction vanishes.
Generalized fractions satisfy the following properties.

Linearity Law. For �1� �2 ∈ N and a1� a2 ∈ R,[
a1�1 + a2�2

x1� � � � � xn

]
= a1

[
�1

x1� � � � � xn

]
+ a2

[
�2

x1� � � � � xn

]
�

Transformation Law. For � ∈ N and elements x′1� � � � � x
′
n, which together with

J generate I up to radical, [
�

x1� � � � � xn

]
=

[
det�rij��
x′1� � � � � x

′
n

]
if x′i =

∑n
j=1 rijxj for i = 1� � � � � n.

Vanishing Law. For � ∈ N ,[
�

x1� � � � � xn

]
= 0

if and only if �x1 � � � xn�
s� ∈ (

xs+1
1 � � � � � xs+1

n

)
N for some s ≥ 0.

Note that powers of x1� � � � � xn together with J also generate I up to radical.
So the above laws apply to generalized fractions with arbitrary denominators. An
easy application of these laws is that adding to one of the denominators by a linear
combination of other denominators does not change the value.

Example 2.2. Look at the case n = 2. I is generated by x1� x2 − ax1 and J up to
radical for any a ∈ R. We have[

�
x1� x2 − ax1

]
=

[
x2�

x1� x2�x2 − ax1�

]

D
ow

nl
oa

de
d 

by
 [

Pu
rd

ue
 U

ni
ve

rs
ity

] 
at

 1
6:

12
 1

4 
O

ct
ob

er
 2

01
3 



MODULE STRUCTURE OF AN INJECTIVE RESOLUTION 3717

=
[

�x2 − ax1��
x1� x2�x2 − ax1�

]
+

[
ax1�

x1� x2�x2 − ax1�

]
=

[
�

x1� x2

]
�

Proposition 2.3. Let R be a Noetherian local ring and N be an R-module, whose
elements are annihilated by a power (depending on the element) of the maximal ideal
of R. An element of Hn

�X1�����Xn�
�R�X1� � � � � Xn��X1�����Xn�

⊗ N� can be written as

� = ∑
i1�����in>0

[
1⊗ 	i1���in

X
i1
1 � � � � � X

in
n

]
� (2)

where 	i1���in ∈ N . The expression is unique in the sense that � = 0 if and only if
	i1���in = 0 for all i1� � � � � in > 0.

Proof. N has a natural module structure over the completion R̂ of R. Elements of
Hn

�X1�����Xn�
�R̂��X1� � � � � Xn��⊗ N� can be written uniquely in the form of (2), see Huang

(1995, p. 21). The proposition follows from the canonical isomorphism

Hn
�X1�����Xn�

�R�X1� � � � � Xn��X1�����Xn�
⊗ N� 	 Hn

�X1�����Xn�
�R̂��X1� � � � � Xn��⊗ N�� �

Let S be the polynomial ring ��X� Y� Z�W� over a field � as in Section 1.

Corollary 2.4. Elements of H4
�X�Y�Z�W��S�X�Y�Z�W�� can be written uniquely as

∑
i�j�k�
>0

[
aijk


Zi�W j� Xk� Y 


]
� (3)

where aijk
 ∈ �.

We call aijk
 the coefficient of
[

1
Zi�Wj�Xk�Y 


]
for the element (3).

Corollary 2.5. Elements of H2
�X�Y��S�X�Y�� can be written uniquely as

∑
i�j>0

[
�ij

�XW�i� �YZ�j

]
�

where �ij ∈ ��Z�W�.

Proof. S�X�Y� 	 ��Z�W��XW� YZ��XW�YZ�. �

Corollary 2.6. Elements of H3
�X�Y�Z��S�X�Y�Z�� can be written uniquely as

∑
i�j�k>0

[
�ijk

Zi� �XW�j� Y k

]
�

where �ijk ∈ ��W�.
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3718 CHAN AND HUANG

Proof. S�X�Y�Z� 	 ��W��XW� Y� Z��XW�Y�Z�. �

Corollary 2.7. Elements of H3
�X�Y�W��S�X�Y�W�� can be written uniquely as

∑
i�j�k>0

[
�ijk

W i� Xj� �YZ�k

]
�

where �ijk ∈ ��Z�.

Proof. S�X�Y�W� 	 ��Z��X� YZ�W��X�YZ�W�. �

Corollary 2.8. Let �f� be a nonzero prime ideal of ��Z�W� contained in �Z�W� but
not containing Z or W . An element � in H3

�X�Y�f��S�X�Y�f�� can be written as

� = ∑
i�j>0

[
gij

hij� �XW�i� �YZ�j

]
�

where gij ∈ ��Z�W� and 0 �= hij ∈ ��Z�W�.� = 0 if and only if gij ∈ hij��Z�W��f� for
all i� j.

Proof. Since S�X�Y�f� 	 ��Z�W��f��XW� YZ��XW�YZ�, there is an isomorphism

H2
�XW�YZ�f��S�X�Y�f� ⊗��Z�W��f�

H1
�f����Z�W��f��� 	 H3

�X�Y�f��S�X�Y�f��

(Huang, 1995, (2.5)) given by

∑
i�j>0

[
1⊗ [ gij

hij

]
�XW�i� �YZ�j

]
�→ ∑

i�j>0

[
gij

hij� �XW�i� �YZ�j

]
�

The result follows from Proposition 2.3. Moreover, � = 0 if and only if
[ gij
hij

] = 0,
equivalently gij ∈ hij��Z�W��f�, for all i� j. �

The following lemma will be used in Section 4.

Lemma 2.9. Let f ∈ ��Z�W� be an irreducible polynomial in �Z�W�. For any s� t > 0,
there exist 
 > 0, g ∈ ��Z�W� and h ∈ ��Z�W�\�f� such that[

g
h� f 


]
=

[
1

Wt� Zs

]
in H2

�Z�W����Z�W��Z�W��.

Proof. We may assume �f� �= �W� to avoid the trivial case. Write

f = f0Z
u + f1W

v
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MODULE STRUCTURE OF AN INJECTIVE RESOLUTION 3719

for some f0 ∈ ��Z�\�Z�, f1 ∈ ��Z�W�\�W� and u� v > 0. Divide s by u:

s = uq + r �0 ≤ q and 0 ≤ r < u��

We choose h to be Wt and prove the lemma by induction on �t/v�, the smallest
integer greater than or equal to t/v. In the case where �t/v� = 1 (i.e., t ≤ v),

fq+1 = �f0Z
u + f1W

v�q+1 = f
q+1
0 Zu�q+1� + wWt�

for some w ∈ ��Z�W�. The following can be computed using Example 2.2:[
f
q+1
0 Zu−r

W t� f q+1

]
=

[
f
q+1
0 Zu−r

W t� f
q+1
0 Zuq+u

]
=

[
1

Wt� Zs

]
�

Assume the lemma holds for �t/v� = n. For the case �t/v� = n+ 1, let

F =
n−1∑
i=0

�f0Z
u�i�−f1W

v�n−i−1�

G =
q∑

j=0

(
q + 1
j

)
�f0Z

u�nj�−f1W
vF�q−j �

Then

f��f0Z
u�n − f1W

vF� = �f0Z
u�n+1 − �−f1W

v�n+1�

��f0Z
u�n − f1W

vF�q+1 = �f0Z
u�n�q+1� − f1W

vFG�

and [
f
q+1
0 Zu−r

W t� f q+1

]
=

[
f
q+1
0 Zu−r ��f0Z

u�n − f1W
vF�q+1

Wt� ��f0Z
u�n+1 − �−f1W

v�n+1�q+1

]

=
[
f
q+1
0 Zu−r ��f0Z

u�n − f1W
vF�q+1

Wt� �f0Z
u��n+1��q+1�

]

=
[
f
q+1
0 Zu−r �f0Z

u�n�q+1�

W t� �f0Z
u��n+1��q+1�

]
−

[
f
q+1
0 Zu−rf1W

vFG

Wt� �f0Z
u��n+1��q+1�

]

=
[

1

Wt� Zs

]
−

[
f
−n�q+1�
0 Zu−rf1FG

Wt−v� Zu�n+1��q+1�

]
�

Since ��t − v�/v� = n, there exist 
0 > 0 and g0 ∈ ��Z�W� such that[
g0

Wt−v� f 
0

]
=

[
1

Wt−v� Zu�n+1��q+1�

]
�
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3720 CHAN AND HUANG

We get the required elements:[
f 
0f

q+1
0 Zu−r + fq+1g0f

−n�q+1�
0 Zu−rWvf1FG

Wt� f 
0+q+1

]

=
[
f
q+1
0 Zu−r

W t� f q+1

]
+

[
g0f

−n�q+1�
0 Zu−rf1FG

Wt−v� f 
0

]

=
[
f
q+1
0 Zu−r

W t� f q+1

]
+

[
f
−n�q+1�
0 Zu−rf1FG

Wt−v� Zu�n+1��q+1�

]
=

[
1

Wt� Zs

]
� �

3. INJECTIVE HULLS

In this section, we study the module structure of an injective hull E��� of
A/� for each prime ideal � of A generated by X� Y and a prime ideal � of
��Z�W� contained in �Z�W�. We use the following two well-known constructions for
injective hulls.

Lemma 3.1. Let R be a Noetherian ring, � ⊂ � be prime ideals of R and E�R/��
be an injective hull of R/�. Then E�R/�� is an R�-module and it is an injective hull
of �R/��� over R�.

Lemma 3.2. Let R be a Noetherian ring, I be an ideal of R, � be a prime ideal
of R containing I and E�R/�� be an injective hull of R/�. Then, as an R/I-module,
HomR�R/I� E�R/��� is an injective hull of R/�.

Let � = �f1� � � � � fm� be a prime ideal of ��Z�W� contained in �Z�W� and � be
the prime ideal of S generated by X� Y� f1� � � � � fm. We denote by � also the element
of SpecA, Spec S� and Spec S�X�Y�Z�W�, which canonically embed into Spec S. Recall
that Hht�

� �S�� is an injective hull of S/�, as S is a Gorenstein ring.

Definition 3.3.

E�f1� � � � � fm� �= E��� �= �� ∈ Hht�
� �S���XW� = YZ��

By Lemma 3.1, Hht�
� �S�� as an S�X�Y�Z�W�-module is also an injective hull of

S�X�Y�Z�W�/�. By Lemma 3.2, with the A-module structure via the bijection

E��� 	 HomS�X�Y�Z�W�
�A�Hht�

� �S����

E��� is an injective hull of A/�. Next, we describe elements in E��� using certain
maps �n

� . If � is principal,

�n
� � ��Z�W� → Hht�

� �S��

is a ��Z�W��-linear map. If � = �Z�W�,

�n
� � H

2
�Z�W����Z�W��Z�W�� → H4

�X�Y�Z�W��S�X�Y�Z�W��

is a �-linear map. �n
� is defined to be zero for n < 0 and is defined below for n ≥ 0.
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MODULE STRUCTURE OF AN INJECTIVE RESOLUTION 3721

Definition 3.4. Let n ≥ 0 and � = �f� be a prime ideal of ��Z�W� contained in
�Z�W�. Given s ∈ �, g ∈ ��Z�W� and h ∈ ��Z�W�\�, we define

�n
�

(
g

h

)
�= g

h

n∑
i=0

[
1

�XW�i+1� �YZ�n+1−i

]
� if �f� = �0��

and

�n
�

(
g

hf s

)
�=



g

h

n∑
i=0

[
1

f sZn+1−i� �XW�i+1� Y n+1−i

]
� if �f� = �Z��

g

h

n∑
i=0

[
1

f sW i+1� Xi+1� �YZ�n+1−i

]
� if �f� = �W��

g

h

n∑
i=0

[
1

f s� �XW�i+1� �YZ�n+1−i

]
� if �f� �= �0�� �Z� or �W��

The �-linear map �n
�Z�W� is defined by

�n
�Z�W�

[
1

Zu�Wv

]
�=

n∑
i=0

[
1

Zn+1−i+u�W i+1+v� Xi+1� Y n+1−i

]
�

where u� v > 0.

If � is principal, �n
� is independent of the choice of a generator f . We use

also the notation �n
f �= �n

� . If � = �Z�W�, we use also the notation �n
Z�W �= �n

� .
The following facts are not hard to check. Details are left to the reader.

Proposition 3.5. Let n ≥ 0.

(1) For � ∈ ��Z�W�, �n
0��� �= 0 if and only if � �= 0.

(2) �n
Z�Z

s� �= 0 (resp. �n
W�W

s� �= 0) if and only if s ≤ n. In the �-vector space E�Z�
(resp. E�W�), elements of the form �n

Z�Z
sW t� (resp. �n

W�Z
tWs�), where s ≤ n and

t ∈ �, are linearly independent.
(3) For nonzero f with Z�W �∈ �f�, �n

f �f
s� �= 0 if and only if s < 0.

For any � ∈ ��Z�W�,

XW�n
f� = YZ�n

f� = �n−1
f ��

Therefore �n
f has image in E�f�.

Example 3.6. For any nonzero � in ��Z�W�,

�XW�n�n
0��� = �YZ�n�n

0��� = �0
0���

and it is nonzero in E�f� by Proposition 3.5(1).
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3722 CHAN AND HUANG

Next, we explain the structure of E�Z�W�. For any � ∈ H2
�Z�W����Z�W��Z�W��,

XW�n
Z�W� = YZ�n

Z�W� = �n−1
Z�W��

Therefore �n
Z�W has image in E�Z�W�. Note that �n

Z�W is not ��Z�W�-linear for n≥ 0.
For instance, � 1

Z�W � is annihilated by Wn+1 but

Wn+1�n
Z�W

[
1

Z�W

]
=

[
1

Z2�W�Xn+1� Y

]
�= 0�

Definition 3.7. For s� t ∈ �, we choose u� v > 0 with u+ s� v+ t ≥ 0 and define the
notation

�n�ZsW t� �= Zu+sWv+t�n
Z�W

[
1

Zu�Wv

]
�

This definition is independent of the choice of u and v, indeed,

�n�ZsW t� =
n∑

i=0

[
1

Zn+1−i−s�W i+1−t� Xi+1� Y n+1−i

]
� (4)

In general, �n�ZsW t� does not equal to �n
Z�W

[
1

Z−s �W−t

]
. For instance,

�1
Z�W

[
1

Z�W−1

]
= 0�

but

�1�Z−1W� = W 2�1
Z�W

[
1

Z�W

]
�= 0�

Proposition 3.8. �n�ZsW t� �= 0 if and only if n ≥ max�0� s� t� s + t�. The nontrivial
�n�ZsW t� form a basis for the �-vector space E�Z�W�.

Proof. Let n ≥ 0. It is clear from the definition that �n�ZsW t� = 0 if one of s, t,
and t + s is greater than n. We show first that the elements of the form �n�ZsW t�
generate E�Z�W�. Let

� = ∑
i�j�k�
≥1

[
aijk


Zi�W j� Xk� Y 


]
∈ H4

�X�Y�Z�W��S�X�Y�Z�W���

where aijk
 ∈ �. Assume that � ∈ E�Z�W�, that is, XW� = YZ� or

∑
i�j�k�
≥1

[
aijk


Zi�W j−1� Xk−1� Y 


]
= ∑

i�j�k�
≥1

[
aijk


Zi−1�W j� Xk� Y 
−1

]
�

Comparing coefficients, we get

ai�j+1��k+1�
 = a�i+1�jk�
+1�
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MODULE STRUCTURE OF AN INJECTIVE RESOLUTION 3723

for i� j� k� 
 ≥ 1. For i′� j′� k′� or 
′ less than 1, if there exist i� j� k� 
 ≥ 1 such that
i+ j = i′ + j′, k+ 
 = k′ + 
′ and j − k = j′ − k′, we define

ai′j′k′
′ �= aijk
�

otherwise we define ai′j′k′
′ �= 0. Then

� = ∑

�m∈�
n≥0

a
m1�n+1�

n∑
i=0

[
1

Z
−i� Wm+i� X1+i� Y n+1−i

]

= ∑

�m∈�
n≥0

a
m1�n+1��
n�Zn+1−
W 1−m��

Now we show that those �n�ZsW t� with n ≥ max�0� s� t� s + t� are linearly
independent over �. We study a linear combination of �n�ZsW t�:

∑
n≥max�0�s�t�s+t�

anst�
n�ZsW t�� (5)

where anst ∈ �. Setting i equal to n and n− s respectively for the expression (4) of
�n�ZsW t�, we have

[
1

Zn+1−i−s�W i+1−t� Xi+1� Y n+1−i

]
=



[
1

Z1−s�Wn−t+1� Xn+1� Y

]
� if i = n�[

1

Z�Wn−s−t+1� Xn−s+1� Y s+1

]
� if i = n− s�

We note that [
1

Z1−s�Wn−t+1� Xn+1� Y

]
= 0� if s > 0

and [
1

Z�Wn−s−t+1� Xn−s+1� Y s+1

]
= 0� if s < 0�

For given n� s� t in the summation in (5),
[ 1
Z1−s �Wn−t+1�Xn+1�Y

]
occurs if s < 0.

By Corollary 2.4,
[

1
Zi�Wj�Xk�Y 


]
are linearly independent for all i� j� k� 
 > 0 in

H4
�X�Y�Z�W��S�X�Y�Z�W��. This implies that if there exist n′� s′� t′ such that

[
1

Zn′+1−i′−s′ �W i′+1−t′ � Xi′+1� Y n′+1−i′

]
=

[
1

Z1−s�Wn−t+1� Xn+1� Y

]
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3724 CHAN AND HUANG

for some i′ ∈ �0� � � � � n′�, then i′ = n′ = n, s′ = s and t′ = t. Thus, for fixed n� s� t

with s < 0, the generalized fraction
[ 1
Z1−s �Wn−t+1�Xn+1�Y

]
occurs in (5) exactly once with

the coefficient anst. Similarly for
[ 1
Z�Wn−s−t+1�Xn−s+1�Y s+1

]
with s ≥ 0. Therefore, if∑

n≥max�0�s�t�s+t�

anst�
n�ZsW t� = 0�

then anst = 0 for all n� s� t by Corollary 2.4 again. Hence, �n�ZsW t� are linearly
independent. �

The A-module structure of E�Z�W� is clear: For s1� t1 ≥ 0 and s2� t2 ∈ �,
we have

Zs1Wt1�n�Zs2Wt2� = �n�Zs1+s2Wt1+t2�� (6)

Xt1Y s1�n�Zs2Wt2� = �n−t1−s1�Zs2−s1Wt2−t1�� (7)

For arbitrary � ∈ A, n ≥ 0 and s2 + t2 ≤ n, we choose f ∈ ��X� Y� Z�W� such that
�− f ∈ �X� Y�n+1 + �Z�W�n−s2−t2+1, then

��n�Zs2Wt2� = f�n�Zs2Wt2��

Replaced � by f , we can use the equalities (6), (7), and �-linearity to multiply
�n�Zs2Wt2� by �.

Example 3.9. By Proposition 3.8, for any nonzero �n�ZsW t�, there exist n1 and
n2 with n1 + n2 = n such that

Xn1Y n2�n�ZsW t� = �0�Zs−n2Wt−n1� �= 0�

Note that �0�ZsW t� obtained by multiplying �n�ZsW t� by �XW�n may be zero if s
or t is positive.

The computations in Examples 3.6 and 3.9 will be used in proving our main
result Theorem 4.12.

Divisions by X, Y , Z, and W can be defined as well. In general, for i� j� k� l ∈ �,
let XiY jZkW l be the �-linear operator on E�Z�W� satisfying

XiY jZkW l�n�ZsW t� = �n−i−j�Zs+k−jW t+l−i��

Using the above description of the A-module structure of E�Z�W�, one can check
that this operator is A-linear.

Definition 3.10. Let � = �f1� � � � � fm� be a prime ideal of ��Z�W� contained in
�Z�W�. We define En���, denoted also by En�f1� � � � � fm�, to be the ��Z�W��Z�W�-
submodule of E��� generated by the image of �n

� .
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MODULE STRUCTURE OF AN INJECTIVE RESOLUTION 3725

En�f� consists of elements of the form �n
f�. En�Z�W� consists of elements of

the form ZsWt�n
Z�W�. Note that powers of Z and W are necessary to represent

elements of En�Z�W�. For instance,[
1

Z�W�X2� Y

]
= ZW 2�1

Z�W

[
1

Z�W

]
does not equal to �n

Z�W� for any � ∈ H2
�Z�W����Z�W��Z�W��. The multiplication by XW

(equals YZ in A) takes elements of En�f� into En−1�f�. The multiplication by X or Y
takes elemens of En�Z�W� into En−1�Z�W�.

Proposition 3.11. E��� = ⊕
n En��� as ��Z�W��Z�W�-modules.

Proof. We prove the proposition in five cases.

Case 1. � = �Z�W�. Already shown in Proposition 3.8.

Case 2. � = �0�. Let

� = ∑
i�j≥1

[
�ij

�XW�i� �YZ�j

]
∈ H2

�X�Y��S�X�Y���

where �ij ∈ ��Z�W�, be an element of E�0�. From the identity XW� = YZ� , we get

�i�j+1� = ��i+1�j

for i� j ≥ 1. We have the expression

� = ∑
n≥0

( ∑
i+j=n+2

[
�ij

�XW�i� �YZ�j

])
= ∑

n≥0

�n
0��1�n+1���

since for any i� j with i+ j = n+ 2, it is clear that �ij = �i�n+2−i� = �1�n+1�.
This shows E�0� = ∑

n En�0�.
An element

�n =
∑[

�ij

�XW�i� �YZ�j

]
∈ En�0��

where �ij ∈ ��Z�W�, satisfies i+ j = n+ 2. If
∑

�n = 0, by Corollary 2.5, �n = 0
for all n. This shows E�0� = ⊕

n En�0�.

Case 3. � = �Z�. Let

� = ∑
i�j�k≥1

[
�ijk

Zi� �XW�j� Y k

]
∈ H3

�X�Y�Z��S�X�Y�Z��

where �ijk ∈ ��W�, be an element of E�Z�. From the identity XW� = YZ� , we get

�i�j+1�k = ��i+1�j�k+1�
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3726 CHAN AND HUANG

for i� j� k ≥ 1. For i′� j′, or k′ less than 1, if there exist i� j� k ≥ 1 such that i+ j =
i′ + j′ and j + k = j′ + k′, we define

�i′j′k′ �= �ijk�

otherwise we define �i′j′k′ �= 0. Then

� = ∑
m∈�
n≥0

�m1�n+1�

n∑
i=0

[
1

Zm−i� �XW�i+1� Y n+1−i

]
= ∑

m∈�
n≥0

�n
Z

(
�m1�n+1�

Zm−n−1

)
�

This shows E�Z� = ∑
n En�Z�.

An element

�n =
n∑

i=0

[
�ijk

Zi� �XW�j� Y k

]
∈ En�Z��

where �ijk ∈ ��W�, satisfies j + k = n+ 2. If
∑

�n = 0, by Corollary 2.6, �n = 0 for
all n. This shows E�Z� = ⊕

n En�Z�.

Case 4. � = �W�. Similar to Case 3.

Case 5. � = �f� not equal to �Z� or �W�. Let

� = ∑
i�j≥1

[
gij

hij� �XW�i� �YZ�j

]
∈ H3

�X�Y�f��S�X�Y�f���

where gij ∈ ��Z�W� and 0 �= hij ∈ ��Z�W�, be an element in E�f�. Multiplying the
numerators and denominators by hij’s, we may assume that all hij equals a fixed
h ∈ ��Z�W�. From the identity XW� = YZ� , we get

gi�j+1� − g�i+1�j ∈ h��Z�W��f�

for i� j ≥ 1. Hence

� = ∑
n≥0

( ∑
i+j=n+2

[
g1�n+1�

h� �XW�i� �YZ�j

])
= ∑

n≥0

�n
f

(
g1�n+1�

h

)
�

This shows E�f� = ∑
n En�f�.

An element

�n =
∑
i�j≥1

[
gij

h� �XW�i� �YZ�j

]
∈ En�f��

where gij ∈ ��Z�W� and 0 �= h ∈ ��Z�W�, satisfies i+ j = n+ 2. If
∑

�n = 0, by
Corollary 2.8, �n = 0 for all n. This shows E�f� = ⊕

n En�f�. �

En��� is not a ��X� Y� Z�W�-module. In fact, XWEn��� = En−1���.
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MODULE STRUCTURE OF AN INJECTIVE RESOLUTION 3727

Proposition 3.12. Let � be a prime ideal of ��Z�W� contained in �Z�W�. Then
E0��� = 0� E����X� Y�.

It is clear that E0��� is annihilated by �X� Y� for all �. To prove the proposition,
it remains to show that E0��� contains all the elements annihilated by �X� Y�. For a
prime ideal �f� of ��Z�W� contained in �Z�W�, we denote

f� �=


X� if �f� = �W��

Y� if �f� = �Z��

XW� otherwise�

The multiplication on E�f� by Z (resp. W ) is an isomorphism if Z �∈ �f� (resp.
W �∈ �f�). Since elements of E�f� are annihilated by XW − YZ, an element of E�f�
is annihilated by f� if and only if it is annihilated by X and Y . For instance, let
f =Z +W and � ∈ E�f�. Then f� = XW and �XW − YZ�� = 0. If X� = Y� = 0,
then clearly f�� = 0. Conversely if f�� = 0, then X� = 0, since the multiplication
by W is an isomorphism. YZ� = 0 as well, since YZ� = f�� . Now Y� = 0, because
the multiplication by Z is an isomorphism.

For Proposition 3.12, what we need to prove is the following.

Proposition 3.13. E0�f� contains all the elements of E�f� annihilated by f�.
E0�Z�W� contains all the elements of E�Z�W� annihilated by �X� Y�.

Proof. Let

� = ∑
�n

0��n�

be an element of E�0� annihilated by XW , where �n ∈ ��Z�W�. Then∑
�n−1

0 ��n� = XW� = 0�

By Proposition 3.11, �n−1
0 ��n� = 0 for all n, which implies �n = 0 for n ≥ 1 by

Proposition 3.5. Therefore,

� = �0
0��0� ∈ E0�0��

Now assume that �f� �= 0, �Z� or �W�. Let

� = ∑
�n

f

(
gn
hn

f sn

)
be an element of E�f� annihilated by XW , where gn� hn ∈ ��Z�W�\�f�. Then

∑
�n−1

f

(
gn
hn

f sn

)
= XW� = 0�
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3728 CHAN AND HUANG

By Propositions 3.11 and 3.5, �n−1
f � gn

hn
f sn� = 0 for all n and this implies sn ≥ 0 for

n ≥ 1. Therefore �n
f �

gn
hn
f sn� = 0 for all n ≥ 1 and

� = �0
f

(
g0
h0

f s0

)
∈ E0�f��

Let

� = ∑
�n

Z

(
gn
hn

Zsn

)
be an element of E�Z� annihilated by Y , where gn� hn ∈ ��Z�W�\�Z�. Then

∑
n≥1

�n−1
Z

(
gn
hn

Zsn−1

)
= Y� = 0�

Using Propositions 3.11 and 3.5 again, a similar argument as in the previous
cases shows �n−1

Z � gn
hn
Zsn−1� = 0 for all n and sn − 1 > n− 1 for n ≥ 1. Therefore

�n
Z�

gn
hn
Zsn� = 0 for all n ≥ 1 and

� = �0
Z

(
g0
h0

Zs0

)
∈ E0�Z��

Similarly, we see that E0�W� contains all the elements of E�W� annihilated
by X.

Let

� = ∑
n≥max�0�s�t�s+t�

anst�
n�ZsW t�

be an element of E�Z�W� annihilated by X and Y , where anst ∈ �. Then∑
n≥max�1�s+1�t�s+t�

anst�
n−1�ZsW t−1� = X� = 0�

By Proposition 3.8, the coefficient anst = 0, if n ≥ max�1� s + 1� t� s + t�. For n ≥ 1,
possible nontrivial coefficients are those annt with t ≤ 0. Similarly, Y� = 0 implies
that possible nontrivial coefficients are those ansn with s ≤ 0. Therefore anst = 0 for
n ≥ 1 and

� = ∑
0≥max�s�t�s+t�

a0st�
0�ZsW t� ∈ E0�Z�W��

�

4. AN INJECTIVE RESOLUTION

In this section, we construct explicitly an injective resolution of A/� using
the injective modules given in Section 3. The coboundary maps of the injective
resolution involve multiplications and divisions by elements of A and certain maps
d0
f , d

1
f appeared in a residual complex.
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MODULE STRUCTURE OF AN INJECTIVE RESOLUTION 3729

A prime ideal �f� is also generated by gf for any invertible element g. For
convenience, we use the notation

⊕
f �=0 E�f� for the direct sum of modules E�f�

indexed by the ideals generated by the irreducible polynomial f ∈ � = �Z�W�;
that is,

⊕
f �=0

E�f� �= ⊕
��=�0���

E����

where f ranges over irreducible polynomials contained in �Z�W�. We use the
notation

∑
f for representing elements in

⊕
f �=0 E�f�.

Recalling the notation f� defined in Section 3, we have the following exact
sequence by Propositions 3.12 and 3.13.

0 → ⊕
f �=0

E0�f� →
⊕
f �=0

E�f�
⊕f�→ ⊕

f �=0

E�f� → 0� (8)

Now we define d0
f using Corollary 2.5.

Definition 4.1. For an irreducible polynomial f ∈ �Z�W�, we define

d0
f � H

2
�X�Y��S�X�Y�� → H3

�X�Y�f��S�X�Y�f��

to be the map

∑
i�j>0

[
gij/hij

�XW�i� �YZ�j

]
�→ ∑

i�j>0

[
gij

hijW
iZj� Xi� Y j

]
�

where gij ∈ ��Z�W� and 0 �= hij ∈ ��Z�W�.

We note that d0
f induces a restriction (by abusing the notation)

d0
f � E�0� → E�f�

since d0
f ��

n
0�g/h�� = �n

f �g/h� and d0
f �En�0�� ⊂ En�f�. The product

∏
f �=0

d0
f � E�0� →

∏
f �=0

E�f�

has image in
⊕

f �=0 E�f�.

Definition 4.2. We define

d0� E�0� → ⊕
f �=0

E�f��
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3730 CHAN AND HUANG

where f ranges over irreducible polynomials in �Z�W���Z�W�, to be the A-linear
map

�n
0

(
g

h

)
�→ ∑

f �=0

�n
f

(
g

h

)
�

where g ∈ ��Z�W� and 0 �= h ∈ ��Z�W�.

Now we define d1
f using Corollaries 2.6–2.8.

Definition 4.3. For an irreducible polynomial f ∈ �Z�W�, we define

d1
f � H

3
�X�Y�f��S�X�Y�f�� → H4

�X�Y�Z�W��S�X�Y�Z�W��

to be the map

∑
i�j�k>0

[
gijk/hijk

f i� Xj� Y k

]
�→ ∑

i�j�k>0

[
gijk

hijk� f
i� Xj� Y k

]
�

where gijk and hijk are in ��Z�W� and hijk has no factor f .

For instance,

d1
W�

n
W�Z

sW t� = �n�ZsW t�
(9)

d1
Z�

n
Z�Z

sW t� = −�n�ZsW t��

Lemma 4.4. d1
f �En�f�� ⊂ En�Z�W�

Proof. Let g� h ∈ ��Z�W�\�f�.
Case 1. �f� �= �Z� or �W�. For j > 0, the elements hWn+1Zn+1 and f j form a

system of parameters for k�Z�W��Z�W�, so there exist 	ij ∈ ��Z�W��Z�W� and s� t >n+ 1
such that {

Zs = 	11hW
n+1Zn+1 + 	12f

j�

W t = 	21hW
n+1Zn+1 + 	22f

j�

Then

d1
f

(
�n

f

(
g

hf j

))
=

n∑
i=0

d1
f

([
g/h

f j� �XW�i+1� �YZ�n+1−i

])

=
n∑

i=0

[
g

hWi+1Zn+1−i� f j� Xi+1� Y n+1−i

]
(10)

=
n∑

i=0

[
g�	11	22 − 	12	21�

Zs−i� W t−n+i� Xi+1� Y n+1−i

]
= g�	11	22 − 	12	21��

n�Zn+1−sWn+1−t� ∈ En�Z�W�� (11)
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MODULE STRUCTURE OF AN INJECTIVE RESOLUTION 3731

The equality (10) holds because W and Z are invertible and (11) is due to the
transformation law in Section 2.

Case 2. f = Z. For s > 0, �n
Z�

g

h
Zs� = 0. For s ≤ n, the elements h and Zn−s+1

form a system of parameters, so one may choose t > 0 and 	ij ∈ ��Z�W��Z�W� such
that

Wt = 	21h+ 	22Z
n−s+1�

Then, a similar computation as in the previous case shows

d1
Z

(
�n

Z

(
g

h
Zs

))
=

n∑
i=0

d1
f

([
g/h

Zn+1−i−s� �XW�i+1� Y n+1−i

])

=
n∑

i=0

[
g

hWi+1� Zn+1−i−s� Xi+1� Y n+1−i

]

=
n∑

i=0

[
g	21

Wt+i+1� Zn+1−i−s� Xi+1� Y n+1−i

]
= −g	21�

n�ZsW−t� ∈ En�Z�W��

Case 3. f = W . Similar to Case 2. �

So we have a restriction (by abusing the notation)

d1
f � E�f� → E�Z�W��

Definition 4.5. We define

d1�
⊕
f �=0

E�f� → E�Z�W�

to be d1 = ⊕
f �=0 d

1
f , where f ranges over irreducible polynomials in �Z�W���Z�W�.

Proposition 4.6. d1 � d0 = 0.

Proof. We apply the argument in the proof of Huang (1997, Prop. 1). Recall that
an arbitrary element in E�0� can be written as a sum of elements in the form of[ g/h

Xj�Y k

]
. It is enough to show the image of such an element under d1 � d0 is zero in

E�Z�W�. We write h = f1 � � � fn where f1� � � � � fn are powers of distinct irreducible
polynomials. It suffices to show

n∑
i=1

[
g

f1 � � � f̂i � � � fn� fi� X
j� Y k

]
= 0� (12)

We induct on n to prove that (12) holds for a more general case where f1� � � � � fn are
assumed to be products of powers of irreducible polynomials but each irreducible
factor appears in only one fi. The case n = 2 is trivial. Assume that n = 3. If some
fi �∈ �Z�W�, (12) clearly holds. So we assume all fi ∈ �Z�W�. That f1 and f2 are a
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3732 CHAN AND HUANG

system of parameters for ��Z�W��Z�W� implies f 

3 is in �f1� f2� for some 
 � 0. By

multiplying g and f3 by f 
−1
3 and replacing them by the latter elements, we may

assume that f3 = g1f1 + g2f2 for some g1� g2 ∈ ��Z�W��Z�W�. Then[
g

f1f2� f3� X
j� Y k

]
=

[
g�g1f1 + g2f2�

f1f2� �g1f1 + g2f2�
2� Xj� Y k

]
=

[
gg1

f2� �g1f1 + g2f2�
2� Xj� Y k

]
+

[
gg2

f1� �g1f1 + g2f2�
2� Xj� Y k

]
=

[
g

f2� g1f
2
1 � X

j� Y k

]
+

[
g

f1� g2f
2
2 � X

j� Y k

]
and [

g
f2f3� f1� X

j� Y k

]
+

[
g

f1f3� f2� X
j� Y k

]
+

[
g

f1f2� f3� X
j� Y k

]
=

[
g

f 2
2 g2� f1� X

j� Y k

]
+

[
g

f 2
1 g1� f2� X

j� Y k

]
+

[
g

f1f2� f3� X
j� Y k

]
= 0�

Now assume that n > 3 and (12) holds for numbers of fi’s less than n of the general
case stated above. Then[

g
f4 � � � fn� �f1f2f3�� X

j� Y k

]
+

[
g

�f1f2f3�f5 � � � fn� f4� X
j� Y k

]
+ · · · +

[
g

�f1f2f3�f4 � � � fn−1� fn� X
j� Y k

]
= 0� (13)[

g
f3�f4 � � � fn�� �f1f2�� X

j� Y k

]
+

[
g

�f1f2��f4 � � � fn�� f3� X
j� Y k

]
+

[
g

�f1f2�f3� �f4 � � � fn�� X
j� Y k

]
= 0� (14)

and [
g

f2�f3 � � � fn�� f1� X
j� Y k

]
+

[
g

f1�f3 � � � fn�� f2� X
j� Y k

]
+

[
g

f1f2� �f3 � � � fn�� X
j� Y k

]
= 0� (15)

Add identities (13), (14), and (15), we get identity (12). �

Definition 4.7. Let E• be the complex

E�0�
d0→ ⊕

f �=0

E�f�
d1→ E�Z�W� → 0 → · · ·
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MODULE STRUCTURE OF AN INJECTIVE RESOLUTION 3733

and E•
n

En�0� →
⊕
f �=0

En�f� → En�Z�W� → 0 → · · ·

be its restriction.

Lemma 4.8. d1 is surjective. Let f ∈ ��Z�W� be an irreducible polynomial in �Z�W�.
Then d1

fE0�f� = E0�Z�W�.

Proof. d1 is surjective, since the generators �n�ZsW t� of E�Z�W� are in the image
of d1 as seen in (9).

To prove the second assertion, we assume that �f� �= �W� to avoid the trivial
case. For any s� t ≤ 0, we choose 
 > 0 and g ∈ ��Z�W� as in the proof of Lemma 2.9
such that [

g
W 1−t� f 


]
=

[
1

W 1−t� Z1−s

]
� (16)

Since �f� �= �W�, there exists n ≥ 1− s such that Zn is a combination of W 1−t and
f 
 over ��Z�W��Z�W�, that is,

Zn = �W 1−t + �f 
 (17)

for some �� � ∈ ��Z�W��Z�W�. Using (16) and (17), we observe the following:[
�g

W 1−t� Zn

]
=

[
�g

W 1−t� Zn − �W 1−t

]
=

[
g

W 1−t� f 


]
=

[
1

W 1−t� Z1−s

]
=

[
Zn+s−1

W 1−t� Zn

]
�

This implies

�g − Zn+s−1 ∈ �W 1−t� Zn� (18)

in ��Z�W��Z�W�. The relations in (17) and (18) can be extended to S�X�Y�Z�W�. Therefore,
the second assertion follows from the computation

d1
f

(
�0

f

(−gZWt

f 


))
=

[ −g

W 1−t� f 
� X� Y

]
=

[
�g

Zn�W 1−t� X� Y

]
= �0�ZsW t�� �

Lemma 4.9. E•
0 is exact.

Proof. We only need to prove that an element of
⊕

f �=0 E0�f� is in the image of d0

if it is in the kernel of d1.Working on the polynomial ring ��Z��W� and using Gauss
lemma, one sees that elements in ��Z�W� can be written as a partial fraction

g0
h0

+ g1
h1f1

+ · · · + gs
hsfs

�
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3734 CHAN AND HUANG

where gi ∈ ��Z�W�, hi ∈ ��Z�, and fi ∈ ��Z�W� is a power of irreducible polynomial.
This implies that, if Z �∈ �f�, elements of E0�f� can be written as

�0
f ��Z

sf t�� (19)

where � ∈ ��Z�W��Z�W�, s ∈ � and t ≤ −1. Since

d0�0
0��Z

sf t� = �0
f ��Z

sf t�+�0
Z��Z

sf t��

and
⊕

f �=0 E0�f� is generated by the image of �0
f (Definition 3.10), to prove the

kernel of d1 contained in the image of d0, we may reduce it to the case that an
element � ∈ E0�Z� with d1� = 0 is in the image of d0. Working on ��W��Z� instead
of ��Z��W�, we may replace Z by W and choose f to be Z in (19). Multiplying �
by an element in ��Z�W�\�Z�W�, we may assume

� = ∑
s≤0
t∈�

ast�
0
Z�Z

sW t�

for some ast ∈ � and write the map explicitly

d0

∑
s≤0
t>0

ast�
0
0�Z

sW t�

 = ∑
s≤0
t>0

ast�
0
Z�Z

sW t�+ ∑
s≤0<t

ast�
0
W�Z

sW t�

= ∑
s≤0
t>0

ast�
0
Z�Z

sW t� = �

since �0
W�Z

sW t� = 0 for all t > 0. �

Note that E•
n is not exact for n ≥ 1. For instance,

d1�n
Z�Z

nW� = 0�

but �n
Z�Z

nW� is not in the image of d0.
The maps XW and

⊕
f �=0 f

� are surjective by (8). Moreover, E0�0� is in the
kernel of the composition �

⊕
f �=0 f

�� � d0 and
⊕

f �=0 E0�f� is in the kernel of the
composition �X ⊕ Y� � d1. We make the following definition.

Definition 4.10. We define

�0� E�0� → ⊕
f �=0

E�f�

and

�11 ⊕ �12�
⊕
f �=0

E�f� → E�Z�W�2
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MODULE STRUCTURE OF AN INJECTIVE RESOLUTION 3735

to be the maps making the following diagram commutative

E�0�
�0−−−−→ ⊕

f �=0
E�f�

�11⊕�12−−−−→ E�Z�W�2

XW

� �⊕f�
�X⊕Y

E�0�
d0−−−−→ ⊕

f �=0
E�f�

d1−−−−→ E�Z�W��

(20)

�0 and �11 ⊕ �12 can be described using the maps

�0
f � E�0� → E�f��

�11
f � E�f� → E�Z�W��

�12
f � E�f� → E�Z�W��

where 
�0
Z = d0

Z � 1
Z
�

�0
W = d0

W � 1
W

�

�0
f = d0

f �


�11
Z = d1

Z � Z

W
�

�11
W = d1

W�

�11
f = d1

f �
1
W

�



�12
Z = d1

Z�

�12
W = d1

W � W

Z
�

�12
f = d1

f �
1
Z
�

for Z�W �∈ �f�. We have

�11 = ⊕
f �=0

�11
f and �12 = ⊕

f �=0

�12
f �

The product
∏

f �=0 �
0
f � E�0� →

∏
f �=0 E�f� has image in

⊕
f �=0 E�f� and equals �0.

Definition 4.11. We define

E�0�
�0→ ⊕

��=�Z�W�

E���
�1→ ⊕

��=�0�

E���
�2→ E�Z�W�2 (21)

to be the total complex associated to the double complex (20) with a negative sign
on

⊕
f�. For n ≥ 3, we define

�n� E�Z�W�2 → E�Z�W�2

to be the map

�n��1 ⊕�2� =
{
�W�1 − Z�2�⊕ �−Y�1 + X�2�� if n is odd�

�X�1 + Z�2�⊕ �Y�1 +W�2�� if n is even�
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3736 CHAN AND HUANG

Theorem 4.12.

E�0�
�0→ ⊕

��=�

E���
�1→ ⊕

��=�0�

E���
�2→ E�Z�W�2

�3→ E�Z�W�2
�4→ E�Z�W�2 · · · (22)

is a minimal injective resolution of A/�.

Proof. �0 � �XW�− �
⊕

f�� � d0 = 0, by the definition of �0. This identity,
together with Proposition 4.6 (that is, d1 � d0 = 0), implies that �1 � �0 = 0. The
multiplication by XW on E�0� is surjective. Therefore to show �2 � �1 = 0, we only
need to check whether the image of an element of

⊕
f �=0 E�f� vanishes. This is easy,

since �X ⊕ Y� � d1 − ��11 ⊕ �12� � �⊕ f�� = 0 by the definition of �11 ⊕ �12. The map⊕
f� is surjective. Therefore to show �3 � �2 = 0, we only need to compute the

image of an element of E�Z�W�. This is also easy, since elements of E�Z�W� are
annihilated by XW − YZ. It is straightforward to show that �n+1 � �n = 0 for n ≥ 3.
We conclude that (22) is a complex.

The maps XW and −�
⊕

f�� are surjective. Chasing diagram (20), it is easy to
see that (21) is exact because

E0�0� →
⊕
f �=0

E0�f� → E0�Z�W� → 0

is exact. The complex

· · ·A2

(
X Y
Z W

)
−−−−→ A2

(
W −Y−Z X

)
−−−−−→ A2

(
X Y
Z W

)
−−−−→ A2

(
W −Y−Z X

)
−−−−−→ A2 �X Y�−−→ A

is exact. Apply the functor HomA�−� E�Z�W��, we get the exact sequence

E�Z�W�
X⊕Y→ E�Z�W�2

�3→ E�Z�W�2
�4→ E�Z�W�2

�5→ E�Z�W�2 → · · · �
Hence ⊕

��=�0�

E���
�2→ E�Z�W�2

�3→ E�Z�W�2
�4→ E�Z�W�2

�5→ E�Z�W�2 → · · · (23)

is also exact. Combining (21) and (23), we conclude that (22) is exact.
The kernel of �0 equals the kernel of d0 restricting to E0�0�. Let

� =
[

g/h

XW� YZ

]

be an element of E0�0� in the kernel of d0, where g ∈ ��Z�W� and 0 �= h ∈ ��Z�W�.
Then g ∈ hZW��Z�W��f� for any irreducible polynomial f ∈ �Z�W�. Therefore
g=�hZW for some � ∈ ��Z�W��Z�W� and

� =
[

�

X� Y

]
� (24)
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MODULE STRUCTURE OF AN INJECTIVE RESOLUTION 3737

All elements of the above form is in the kernel of d0. These elements form a module
isomorphic to A/�. Therefore (22) is an injective resolution of A/�.

Let � = ∑n
i=0 �

i
0��i� be a nonzero element of E�0� with �n �= 0 and �n = g/h

for some g� h ∈ ��Z�W�. By the structure of E�f� discussed in Example 3.6,

hWZ�XW�n� = hWZ�0
0��n� =

[
g

X� Y

]

which is a nonzero element in E0�0� of the form (24), so it is in the image of A/�.
Hence E�0� is an injective hull of A/�.

Every nonzero element of
⊕

��=�Z�W� E��� multiplied by a suitable element of
��Z�W� becomes a nonzero element in the summand E�0� of the form

∑
�i

0�gi�,
gi ∈ ��Z�W�. This element is in the image of �0.

Every nonzero element of
⊕

f �=0 E�f� multiplied by suitable powers of
irreducible polynomials becomes a nonzero element �1 =

∑
�i

f �hi/f
ri � ∈ E�f� for

some nonzero f� hi ∈ ��Z�W�, and n, ri ∈ �. By definition,

∑
�i

f

(
hi

f ri

)
= d0

f

∑
�i

0

(
hi

f ri

)
= �0

∑
�i

0

(
hi

f ri

)
if Z�W �∈ �f� and

∑
�i

f

(
hi

f ri

)
= d0

f �
1
f

(
f
∑

�i
0

(
hi

f ri

))
= �0

∑
f�i

0

(
hi

f ri

)
if f = Z or W . So ��1� 0� is in the image of �1. Every nonzero element of E�Z�W�
multiplied by suitable powers of X and Y becomes a nonzero element �2 ∈ E0�Z�W�
(see Example 3.9). By Lemma 4.8 and the definition of f�, �0� �2� is in the image of
�1. Now for a general case, multiplied by suitable powers of irreducible polynomials
in ��Z�W�, and those of X and Y , a nonzero element of �

⊕
f �=0 E�f��⊕ E�Z�W�

becomes a nonzero element ��1� �2� with �1� �2 as described in the above and
therefore, it is in the image of �1.

Every nonzero element of E�Z�W�2 multiplied by suitable powers of X and Y
becomes a nonzero element of E0�Z�W�2. Multiplied again by suitable powers of Z
and W , this element becomes a nonzero element of the form

	�0�1�⊕ 
�0�1� �	� 
 ∈ ���

which is in the image of �n (n ≥ 2), since

{
�11�	�0

W�1�⊕−
�0
Z�1�� = 	�0�1�

�12�	�0
W�1�⊕−
�0

Z�1�� = 
�0�1�{
	X�1�W�+ 
Z�0�W−1� = 	�0�1�

	Y�1�W�+ 
W�0�W−1� = 
�0�1�
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3738 CHAN AND HUANG{
	W�0�W−1�− 
Z�1�W� = 	�0�1�

−	Y�0�W−1�+ 
X�1�W� = 
�0�1��

Therefore the resolution is minimal. �

Corollary 4.13. The Bass numbers of A/� are as follows. Let f be an irreducible
polynomial contained in �Z�W�.

�i��X� Y� Z�W��A/�� =


0� if i < 2�

1� if i = 2�

2� if i > 2�

�i��X� Y�� A/�� =
{
1� if i < 2�

0� if i ≥ 2�

�i��X� Y� f�� A/�� =


0� if i = 0�

1� if i = 1 or 2�

0� if i > 2�

All other Bass numbers of A/� are zero.

Minimal injective resolutions of the above A/� are eventually periodic of
period 2. In a private communication with K. Yanagawa, we learn that this is
true in a general setting: Over a local ring R which is a hypersurface with an
isolated singularity, minimal injective resolutions of any finitely generated modules
are eventually periodic. His proof uses Matlis duality and a result of Eisenbud
(1980). We sketch the proof as follows. Denote the maximal ideal and the residue
field of R by � and � respectively. Let M be a finitely generated R-module and E
an injective hull of �. Since R has only isolated singularity, ExtiR�

�R�/�R��M�� = 0
for any prime ideal � of R not equal to � and all i less than n, the dimension of R.
Therefore, M has a minimal resolution in form of

0 → M → I0 → I1 → · · · → In−1 → E�n���M� dn→ E�n+1���M� → · · · � (25)

Let K be the kernel of dn. The dual of K, HomR̂�K� E�, is a Noetherian R̂-module.
Its minimal free resolution

· · · → R̂�n���M� → R̂�n���M� → HomR̂�K� E� → 0

is eventually periodic by Theorem 6.1 in Eisenbud (1980) and so is the injective
resolution (25) of M .

5. APPLICATIONS

5.1. Local Cohomology

We compute the local cohomology module Hi
I �A/�� of A/� supported at an

ideal I of A. Recall that the injective resolution (22) of A/� is built up by injective
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MODULE STRUCTURE OF AN INJECTIVE RESOLUTION 3739

hulls E��� of modules A/��� X� Y�, where � is a prime ideal of ��Z�W�. Since elements
in E��� are annihilated by powers of X and Y , the functors �I and �I+�X�Y� have the
same effect on the complex (22). Hence Hi

I �A/�� = Hi
I+�X�Y��A/�� for all i and, to

compute the local cohomology modules, we may assume that I = �I0� X� Y� for some
ideal I0 of ��Z�W�. If I0 ⊂ �, then E��� being �-torsion is also I-torsion. If I0 �⊂ �,
there is an element a ∈ I0\�. The only element of E��� annihilated by powers of a is
zero, so E��� is I-torsion free in this case. Therefore, applying the I-torsion functor
�I�−� simply means taking away those E��� with I0 �⊂ � from the complex (22).

If ht���Z�W� ∩ I� = 2, �X� Y� Z�W� is the only prime containing I . Apply the
functor �I�−� to the injective resolution (22) of A/�, we get the complex

0 → 0 → E�Z�W�
X⊕Y→ E�Z�W�2

�3→ E�Z�W�2
�4→ E�Z�W�2 → · · ·

whose only nontrivial cohomology is E0�Z�W�. Therefore

Hi
I

(
A

�

)
=

{
E0�Z�W�� if i = 2�

0� if i �= 2�
(26)

As a �-vector space, H2
I �A/�� has a basis consisting of �0�ZsW t�, where s� t ≤ 0.

A local cohomology module is a direct limit of extension modules. Using the
injective resolution (22), we can see clearly the behavior of the limit

lim
n→�Ext2A

(
A

�X� Y� Z�W�n
�
A

�

)
= H2

�X�Y�Z�W�

(
A

�

)
�

Apply the functor HomA�A/�X� Y� Z�W�n�−� to (22), we get

0 → 0 → HomA

(
A

�X� Y� Z�W�n
� E�Z�W�

) (
X
Y

)
→ HomA

(
A

�X� Y� Z�W�n
� E�Z�W�2

)
→ · · · �

Ext2A�A/�X� Y� Z�W�n� A/�� is isomorphic to the submodule of E�Z�W� consisting
of those elements annihilated by X, Y and �X� Y� Z�W�n. As a �-vector space,
Ext2A�A/�X� Y� Z�W�n� A/�� has a basis consisting of �0�ZsW t�, where s� t ≤ 0 satisfy
s + t + n > 0. In particular,

dim� Ext
2

(
A

�X� Y� Z�W�n
�
A

�

)
= n�n+ 1�

2
�

As n increasing, the set ��0�ZsW t��s� t ≤ 0� s + t + n > 0� becomes larger and closer
to the basis ��0�ZsW t��s� t ≤ 0� of H2

�X�Y�Z�W��A/��.
If ht���Z�W� ∩ I� = 0, then I = �X� Y�. The functor �I�−� does not change the

complex (22). Therefore

Hi
�X�Y�

(
A

�

)
=

{
A/�� if i = 0�

0� if i �= 0�
(27)
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3740 CHAN AND HUANG

Now we look at the case ht���Z�W� ∩ I� = 1. Applying �I�−� to (22), we get
a complex quasi-isomorphic to

0 → ⊕
I⊂�f�X�Y�

E0�f� → E0�Z�W� → 0 → · · · �

By Lemma 4.8, the nontrivial map in the above complex is surjective. Therefore

Hi
I

(
A

�

)
=

{
kernel of

⊕
I⊂�f�X�Y� E0�f� → E0�Z�W�� if i = 1�

0� if i �= 1�
(28)

For instance, if I = �Z�X� Y�, the above complex becomes

· · · → 0 → E0�Z� → E0�Z�W� → 0 → · · · �

As a ��W��W�-module, H1
�Z�X�Y��A/�� is generated freely by �0

Z�Z
sW�, where s ≤ 0.

5.2. Normal Module

We would like to make explicit the canonical isomorphism

HomA��/�
2� A/�� → Ext1A�A/�� A/�� (29)

in terms of the injective resolution (22) of A/�. Note that the canonical map

HomA��/�
2� A/�� → HomA��� A/��

is an isomorphism. We describe an isomorphism between Ext1A�A/�� A/�� and
HomA��� A/�� to establish (29).

We compute Ext1A�A/�� A/�� by applying the functor HomA�A/��−� to (22).
By Proposition 3.12, Ext1A�A/�� A/�� is the cohomology of the complex

E0�0�
�0→ ⊕

��=�Z�W�

E0���
�1→ ⊕

��=�0�

E0����

By Lemma 4.9, it is also the kernel of

E0�0�
�0→ ⊕

f �=0

E0�f��

Explicitly,

Ext1A�A/�� A/�� 	 ��0
0�gZ

2W 2��g ∈ ��Z�W��Z�W�� ⊂ E0�0��
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MODULE STRUCTURE OF AN INJECTIVE RESOLUTION 3741

Consider the diagram

Hom��� A/���
E0�0� −−−−→ E�0� −−−−→ Hom��� E�0��� � �⊕

��=�Z�W�

E0��� −−−−→ ⊕
��=�Z�W�

E��� −−−−→ Hom���
⊕

��=�Z�W�

E����� ���
���⊕

��=�0�
E0���

���

obtained by applying the Hom functors on the short exact sequence

0 → � → A → A/� → 0

and using (22) to establish the vertical maps. Chasing the above diagram, we get an
isomorphism

Ext1A�A/�� A/�� → HomA��� A/���

which maps �0
0�gZ

2W 2� to the A-linear map � → A/� determined by

X �→ gZ and Y �→ gW

for g ∈ ��Z�W��Z�W�.

5.3. Yoneda Algebra

First we compute Ext∗A�A/�� A/�� =
∑�

i=0 Ext
i
A�A/�� A/��. In Subsection 5.2,

we have seen that

Ext1A�A/�� A/�� 	
{
�0

0

(
gZ2W 2

) � g ∈ ��Z�W��Z�W�

}
�

Let

e0 = �0
0�ZW� ∈ E�0��

e1 = �0
0�Z

2W 2� ∈ ⊕
��=�

E����

e2 = �0
W�Z� ∈

⊕
��=0

E����

e2n = 0⊕�0�1� in the 2nth term E�Z�W�2 of (22)�
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3742 CHAN AND HUANG

where n > 1, be (the equivalence classes of) the cycles of the complex (22). It should
be pointed out that all the above ei represent nontrivial cohomology classes in
ExtiA�A/�� A/��. For each ej , we define

�j� A/� → the jth term of (22)

to be the map sending 1 to ej , in which �0 is the embedding making (22) in
Theorem 4.12 an injective resolution of A/�.

The following Lemma 5.1 describes Ext∗A�A/�� A/�� as an A-module using
independent generators ei. Later in Proposition 5.3, we will present Ext∗A�A/�� A/��
as an A-algebra.

Lemma 5.1. As an A-module, the Yoneda algebra Ext∗A�A/�� A/�� is generated by
e0� e1� e2� e4� e6� · · · . The annihilators of e0 and e1 are �; for i > 0, the annihilator of
e2i is �+ AZ + AW .

Proof. It is clear that Ext0A�A/�� A/�� is generated by e0, whose annihilator is �.
The module Ext1A�A/�� A/�� has been treated in Subsection 5.2.

As seen in Subsection 5.2, for all i ≥ 2, ExtiA�A/�� A/�� is a cohomology
module of the complex

E0�0�
�0−→ ⊕

f �=0

E0�f�
�11⊕�12−−−−→ E0�Z�W�2

�3−→ E0�Z�W�2 → · · · �

For n ≥ 2, Ext2n+1
A �A/�� A/�� = 0, since the complex

E0�Z�W�2

(
0 Z
0 W

)
−−−→ E0�Z�W�2

(
W −Z
0 0

)
−−−−→ E0�Z�W�2

is exact. The exactness of the above sequence means that the kernel of � W −Z
0 0 �

consists of elements of the form Z� ⊕W� , where � ∈ E0�Z�W�. By Lemma 4.8,
these elements are in the image of W

(
�11
Z ⊕ �12

Z

) = �Zd1
Z�⊕ �Wd1

Z�. Therefore,

E0�Z�
�11Z ⊕�12Z−−−−→ E0�Z�W�2

(
W −Z
0 0

)
−−−−→ E0�Z�W�2

is exact and Ext3A�A/�� A/�� = 0 as well.
The cohomology of the complex

E0�Z�W�2

(
W −Z
0 0

)
−−−−→ E0�Z�W�2

(
0 Z
0 W

)
−−−→ E0�Z�W�2

is generated by the element in Ext2nA �A/�� A/�� represented by 0⊕�0�1�. Therefore
Ext2nA �A/�� A/�� = Ae2n for n ≥ 2. The element e2n is nonzero and annihilated by Z,
W and �. Its annihilator is hence �+ AZ + AW .

As seen in the proof of Lemma 4.9, if Z�W �∈ �f�, elements of E0�f� can be
written as

�0
f ��Z

sf t��
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MODULE STRUCTURE OF AN INJECTIVE RESOLUTION 3743

where � ∈ ��Z�W��Z�W�, s ∈ � and t ≤ −1. Since

�0
f ��Z

sf t� = �0�0
0��Z

sf t�−�0
Z��Z

s−1f t�−�0
W��Z

sf tW−1��

to compute Ext2A�A/�� A/��, we may restrict �11 ⊕ �12 to E0�Z�⊕ E0�W�. Multiplied
by an element in ��Z�W�\�Z�W�, an element in E0�Z�⊕ E0�W� can be written as the
form ∑

s≤0
t∈�

ast�
0
Z�Z

sW t�+∑
s∈�
t≤0

bst�
0
W�Z

sW t��

Since

�0
Z�Z

sW t� = �0�0
0�Z

s+1Wt�−�0
W�Z

s+1Wt−1�

and

�0
W�Z

sW t� = �0�0
0�Z

sW t+1� for s > 1�

to compute Ext2A�A/�� A/��, we may work on elements of the form∑
s≤1
t≤0

bst�
0
W�Z

sW t�

and assume that it is in the kernel of �11 ⊕ �12.

�11

∑
s≤1
t≤0

bst�
0
W�Z

sW t�

 = 0

implies bst = 0 for all s� t ≤ 0. Furthermore,

�12

(∑
t≤0

b1t�
0
W�ZW

t�

)
= 0

implies b1t = 0 for all t ≤ −1. Therefore, b10 is the only possible nonzero coefficient
and Ext2A�A/�� A/�� = Ae2. Clearly, e2 is annihilated by W and �. Since Ze2 =
�0�0

0�Z
2W�, it is also annihilated by Z. Finally, e2 is nonzero, so its annihilator is

�+ AW + AZ. �

Now we compute the Yoneda pairing

ExtiA�A/�� A/��× ExtjA�A/�� A/�� → Exti+j
A �A/�� A/���

Since the pairing is A-bilinear, we only need to compute ei × ej .
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3744 CHAN AND HUANG

Lemma 5.2.

ei × ej =


ei� if j = 0�

ej� if i = 0�

0� if i = 1 or j = 1� but ij �= 0�

−ei+j� if ij �= 0 and i� j are both even�

Proof. To compute e2 × e2, we need to construct a commutative diagram

(30)

It is straightforward to check that the diagrams

and( ⊕
f �=0�Z�W

E�f�

)
⊕ E�Z�⊕ E�W�

�43−−−−→ E�Z�W�⊕
( ⊕

f �=0�Z�W
E�f�

)
⊕ E�Z�⊕ E�W�

�23

� ��24

E�Z�W�2 −−−−−→(
W −Z−Y X

) E�Z�W�2

are commutative, where

�23 =

− ⊕
f �=0�Z�W

d1
f

1
W

−d1
Z

1
W

0

0 0 d1
W

1
Z

 �

�24 =
−1 0 0 0

0 − ⊕
f �=0�Z�W

d1
f

1
ZW

−d1
Z

1
W

−d1
W

1
Z

 �
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MODULE STRUCTURE OF AN INJECTIVE RESOLUTION 3745

�43 =


⊕

f �=0�Z�W
d1
f d1

Z d1
W

− ⊕
f �=0�Z�W

f� 0 0

0 −Z� 0
0 0 −W�

 �

We define the vertical maps in (30) to be those in the above and zero maps if a
certain component is not included above. The product e2 × e2 is the image of e2
under the map �24, which equals −e4.

We use the same method to compute other ei × ej . For i > 1, the diagram

commutes. Therefore e2 × e2i = −e2i+2 for i > 1. The diagram

⊕
��=�0� E���

�2−−−−→ E�Z�W�2

(
W −Z−Y X

)
−−−−−→ E�Z�W�2 · · ·

�24

� �(−1 0
0 −1

) �(−1 0
0 −1

)
E�Z�W�2 −−−−→(

X Z
Y W

) E�Z�W�2 −−−−−→(
W −Z−Y X

) E�Z�W�2 · · ·

commutes. Therefore e2j × e2i = −e2i+2j for i ≥ 1 and j > 1. The diagram

commutes and �1 has image in E�0�. Therefore e1 × e1 = 0.
Ext2i+1

A �A/�� A/�� = 0 for i ≥ 1. Therefore e1 × e2i = e2i × e1 = 0 for i ≥ 1. It
is easy to see that e0 × ei = ei × e0 = ei. �

Proposition 5.3. The Yoneda algebra Ext∗A�A/�� A/�� is isomorphic to the
polynomial ring A/��U� V� modulo the ideal generated by ZV , WV , U 2, and UV .

Proof. All ei are annihilated by �. So there is an A-algebra homomorphism

A/��U� V� → Ext∗A�A/�� A/��
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3746 CHAN AND HUANG

given by 1 �→ e0, U �→ e1 and V �→ e2. Since Ext∗A�A/�� A/�� is generated by ei
and �−1�n+1e2n = en2 (the Yoneda product of n copies of e2), the homomorphism is
surjective. By Lemmas 5.1 and 5.2, the kernel of the homomorphism is generated by
ZV , WV , U 2, and UV . �

Corollary 5.4. The Yoneda algebra Ext∗A�A/�� A/�� is commutative and finitely
generated.

5.4. Dutta, Hochster, and McLaughlin’s Module

We recall the definition of the module M given by Dutta et al. (1985) (see also
Roberts, 1998, 13.2). As a �-vector space, it is 15-dimensional:

M = ��u1 + · · · + �u5�+ ��v1 + · · · + �v4�+ ��w1 + · · · + �w6��

Its module structure is given by

Xui = Yui = Zui = Wui = 0 �i = 1� � � � � 5�

Xv1 = u1 Yv1 = 0 Zv1 = 0 Wv1 = 0

Xv2 = u2 Yv2 = 0 Zv2 = 0 Wv2 = 0

Xv3 = 0 Yv3 = 0 Zv3 = u1 Wv3 = 0

Xv4 = 0 Yv4 = 0 Zv4 = u2 Wv4 = 0

Xw1 = v1 Yw1 = u3 Zw1 = 0 Ww1 = u1

Xw2 = v2 Yw2 = u4 Zw2 = 0 Ww2 = u2

Xw3 = v3 Yw3 = u5 Zw3 = v1 Ww3 = 0

Xw4 = v4 Yw4 = 0 Zw4 = v2 Ww4 = u3

Xw5 = u4 Yw5 = 0 Zw5 = v3 Ww5 = u4

Xw6 = u5 Yw6 = 0 Zw6 = u3 + v4 Ww6 = u5�

Note that all monomials of degree greater than one act on the basis ui, vj , wk

trivially except the following cases:

X2w1 = u1 XZw3 = u1 Z2w5 = u1

X2w2 = u2 XZw4 = u2 Z2w6 = u2

An A-linear homomorphism � from M to an A-module N is determined by
its values at w1� � � � � w6 and satisfies the conditions

Z��w1� = Z��w2� = W��w3� = Y��w4� = Y��w5� = Y��w6� = 0

X��w1� = Z��w3�

X��w2� = Z��w4�

X��w3� = Z��w5�
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MODULE STRUCTURE OF AN INJECTIVE RESOLUTION 3747

Y��w1� = W��w4�

X��w5� = Y��w2� = W��w5�

X��w6� = Y��w3� = W��w6�

Z��w6� = Y��w1�+ X��w4�

W��w1� = X2��w1� = XZ��w3� = Z2��w5�

W��w2� = X2��w2� = XZ��w4� = Z2��w6�

and the condition that all monomials of degree greater than one act trivially on
��wi� except X2��w1�, XZ��w3�, Z

2��w5�, X
2��w2�, XZ��w4�, Z

2��w6�. Any six
elements ��w1�� � � � � ��w6� ∈ N satisfying the above conditions extend uniquely to
an A-linear map �� M → N . Note that some of these conditions are redundant.

Lemma 5.5. HomA�M�E�f�� = 0.

Proof. Let � ∈ HomA�M�E�f��. If Z �∈ �f�, multiplication by Z is bijective. Thus

Z���1� = Z���2� = 0 �⇒ ���1� = ���2� = 0

Z���3� = X���1� = 0 �⇒ ���3� = 0

Z���4� = X���2� = 0 �⇒ ���4� = 0

Z���5� = X���3� = 0 �⇒ ���5� = 0

Z2���6� = W���2� = 0 �⇒ ���6� = 0

If f = Z, multiplication by W is bijective. Thus

W���3� = 0 �⇒ ���3� = 0

W���6� = Y���3� = 0 �⇒ ���6� = 0

W���2� = Z2���6� = 0 �⇒ ���2� = 0

W���5� = Y���2� = 0 �⇒ ���5� = 0

W���1� = Z2���5� = 0 �⇒ ���1� = 0

W���4� = Y���1� = 0 �⇒ ���4� = 0

In either case, � = 0. �

Now we compute M ′ �= HomA�M�E�Z�W��. For 1 ≤ i� j ≤ 6, let

�i�wj� �= �ij�
0�1��

Furthermore, for 1 ≤ j ≤ 6, let

�13��j� �= X−1�1��j�+ Z−1�3��j��

�24��j� �= X−1�2��j�+ Z−1�4��j��
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3748 CHAN AND HUANG

�35��j� �= X−1�3��j�+ Z−1�5��j��

�46��j� �= X−1�4��j�+ Z−1�6��j��

�14��j� �= Y−1�1��j�+ �W−1 − X−1��4��j��

�25��j� �= Y−1�2��j�+ �W−1 + X−1��5��j��

�36��j� �= Y−1�3��j�+ �W−1 + X−1��6��j��

�135��j� �= �W−1 + X−2��1��j�+ Z−1X−1�3��j�+ Z−2�5��j��

�246��j� �= �W−1 + X−2��2��j�+ Z−1X−1�4��j�+ Z−2�6��j��

For 1 ≤ i ≤ 6, it is straightforward to check that �i�wj� satisfy the conditions prior
to Lemma 5.5. For i ∈ �13� 24� 35� 46� 14� 25� 36� 135� 246�, we use the following
facts to check these conditions for �i�wj�:

• Divisions or multiplications by powers of different variables on E�Z�W� are
commutative. For example, XiY j� = Y jXi� for i� j ∈ �;

• The divisions by a power of a single variable satisfy the properties: XiX−j� =
Xi−j� for i� j > 0 and the same for Y , Z and W . However, X−1X� �= � in general.

All these �i extend to well-defined elements in M ′.

Lemma 5.6.

��i � i ∈ �1� 2� 3� 4� 5� 6� 13� 24� 35� 46� 14� 25� 36� 135� 246��

is a basis for the �-vector space M ′.

Proof. Clearly, �1, �2, �3, �4, �5, �6 are linearly independent. Assume that

� = ∑
i

ai�i = 0 �ai ∈ ���

Since Z2� = W� = � = 0, we evaluate the left-hand side of the above equality at
�3, �4, �5, �6 and obtain

a135 = a246 = 0�

a14 = a25 = a36 = 0�

a13 = a24 = a35 = a46 = 0�

Hence all ai = 0 and �i are linearly independent. Since the Matlis dual M ′ of M has
length 15, �i generate M ′. �

Proposition 5.7. As an A-module, the minimal number of generators for M ′ is 5.

Proof. �X� Y� Z�W�M ′ as a vector space is generated by �1, �2, �3, �4, �5, �6,
�13, �24, �35, �46. Therefore ��14��25��36��135��246� is a minimal generating set
for M ′. �
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MODULE STRUCTURE OF AN INJECTIVE RESOLUTION 3749

Now we compute ExtiA�M�A/��.

Proposition 5.8.

dimk Ext
i
A�M�A/�� =


6� if i = 2�

7� if i = 3�

0� otherwise�

Proof. For n ≥ 2, Ext2nA �M�A/�� is the cohomology of

M ′2
(

W −Z−Y X

)
−−−−−→ M ′2

(
X Z
Y W

)
−−−−→ M ′2�

To simplify the notation, we write �i� j� for the element ��i��j� ∈ M
′2. The kernel

of � X Z
Y W � is generated by �35�−13�, �46�−24�, and �i� 0�, �0� i�, where 1 ≤ i ≤ 6. The

image of � W −Z−Y X � is generated by �4�−1�, �5�−2�, �6�−3�, �1� 0�, �2� 0�, �−3� 1�,
�−4� 2�, �−5� 3�, �−6� 4�, �0�−4�, �0� 5�, �0� 6�, �−35� 13�, �−46� 24�. Since

�0�−3� = �6�−3�+ �−6� 4�+ �0�−4��

�0�−2� = �5�−2�+ �−5� 3�+ �0�−3��

�0�−1� = �4�−1�+ �−4� 2�+ �0�−2��

�−3� 0� = �−3� 1�+ �0�−1��

�−4� 0� = �−4� 2�+ �0�−2��

�−5� 0� = �−5� 3�+ �0�−3��

�−6� 0� = �−6� 4�+ �0�−4��

all �0� i� and �i� 0� are contained in the image of � W −Z−Y X �. Therefore,
Ext2nA �M�A/�� = 0 for n ≥ 2.

For n ≥ 2, Ext2n+1
A �M�A/�� is the cohomology of

M ′2
(
X Z
Y W

)
−−−−→ M ′2

(
W −Z−Y X

)
−−−−−→ M ′2�

The kernel of
(

W −Z−Y X

)
is generated by �13� 0�, �24� 0�, �35� 0�, �46� 0�, and �i� 0�,

�0� i�, where 1 ≤ i ≤ 6. The image of
(
X Z
Y W

)
is generated by �1� 0�, �2� 0�, �3� 0�,

�4� 0�, �−4� 1�, �5� 2�, �6� 3�, �13� 0�, �24� 0�, �5� 0�, �6� 0�, �0� 4�, �0� 5�, �0� 6�, �35� 1�,
�46� 2�. Clearly, Ext2n+1

A �M�A/�� = 0 for n ≥ 2.
Ext3A�M�A/�� is the cohomology of

M ′
(
X
Y

)
−−→ M ′2

(
W −Z−Y X

)
−−−−−→ M ′2�

The image of
(
X
Y

)
is generated by �1� 0�, �2� 0�, �3� 0�, �4� 0�, �−4� 1�, �5� 2�, �6� 3�,

�13� 0�, �24� 0�. Ext3A�M�A/�� is generated by the classes represented by �0� 2�, �0� 3�,
�0� 4�, �0� 5�, �0� 6�, �35� 0�, �46� 0�. In particular, dim� Ext

3
A�M�A/�� = 7.
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Ext2A�M�A/�� has a basis �1� � � � � �6, so dimk Ext
2
A�M�A/�� = 6. It is easy

to see that Ext0A�M�A/�� = Ext1A�M�A/�� = 0. This completes the proof of the
proposition. �
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