
Math. Ann. (2013) 356:241–258
DOI 10.1007/s00208-012-0840-y Mathematische Annalen

Sobolev regularity of the ∂-equation on the Hartogs
triangle

Debraj Chakrabarti · Mei-Chi Shaw

Received: 14 September 2011 / Revised: 27 June 2012 / Published online: 26 August 2012
© Springer-Verlag 2012

Abstract The regularity of the ∂-problem on the domain {|z1| < |z2| < 1} in C
2

is studied using L2-methods. Estimates are obtained for the canonical solution in
weighted L2-Sobolev spaces with a weight that is singular at the point (0, 0). In par-
ticular, the singularity of the Bergman projection for the Hartogs triangle is contained
at the singular point and it does not propagate.

Mathematics Subject Classification (1991) 32W05 · 32A07

1 Introduction

The Hartogs Triangle, the bounded pseudoconvex domain H in C
2 given by H =

{(w1, w2) ∈ C
2 | |w1| < |w2| < 1} is a venerable source of counterexamples to

conjectures in complex analysis. The boundary of H has a serious singularity at (0, 0)
near which it cannot be represented as a graph. Though a lot is known about H, not
all its mysteries have been uncovered yet. It is an important yet simple model domain
which needs to be understood thoroughly in any program of extending classical results
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242 D. Chakrabarti, M.-C. Shaw

of several complex variables from smoothly bounded pseudoconvex domains to more
general domains. In this article, we consider the regularity of the ∂-problem on H in
the L2-Sobolev topology.

Using integral representations, the regularity of the ∂-problem has been investigated
on H in [5,16], with estimates in the spaces C k,α (functions and forms in C k , whose
k-th partial derivatives are Hölder continuous of exponentα). The remarkable outcome
of these investigations is that for every ∂-closed (0, 1)-form g on H of class C k,α ,
there is a function u on H, also of class C k,α such that ∂u = g, and this function
u is given by an explicit integral formula. Note that the ∂-problem is not globally
regular on H, i.e., there is a ∂-closed (0, 1)-form h on H, such that while h ∈ C ∞(H),
for every u satisfying ∂u = h, we have u �∈ C ∞(H) (see [5]). In contrast, when a
domain is pseudoconvex with smooth boundary (see [15]), or its closure has a Stein
neighborhood basis (see [7]), one can solve the ∂-problem to obtain a solution smooth
up to the boundary, provided the data is smooth.

However, it is difficult to use the integral representation method to obtain infor-
mation about regularity in Sobolev spaces. We use a method similar in spirit to that
used in [16] to obtain estimates in Sobolev spaces for the canonical solution of the
∂-equation in H. We use the fact that H is biholomorphic to a product domain P to
transfer the problem from H to P (see Sect. 4 below.) This opens up the possibility of
using the technique of [4]. The fact that one of the factors in the product representation
of H is non-Lipschitz causes some technical problems in applying the results of [4]
but these are easily overcome. This leads to estimates in Sobolev-type spaces with
weights singular at the bad point (0, 0).

The use of weights in the L2-method is of course classical. In the context of non-
smooth domains, it seems that singular weights are a natural device to control the
behavior of functions and forms near the singular part of the boundary. Such weights
also arise naturally in recent attempts to generalize classical estimates on the ∂- and
∂-Neumann problems from smooth to non-smooth strictly pseudoconvex domains (see
[8–10]).

While the Hartogs triangle is rather special, right now the method used here seems
to be the only technique available to study the question treated in this paper. Of
course, we can extend the method to related “Product-type” singularities. It will be
very interesting to have a general technique to deal with the regularity in Sobolev
spaces of the ∂-problem on singular domains such as H.

2 Sobolev estimates

Let � be an integer, and let L2(H, ��) denote the space of locally integrable functions
f on H for which the norm defined by

∥
∥ f

∥
∥2

L2(H,��)
=

∫

H

|w2|2� | f (w)|2 dV (w) (2.1)

is finite, where w = (w1, w2) are the standard coordinates on H, and here and in
the sequel dV denotes Lebesgue measure on Euclidean space. � here denotes the
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Sobolev regularity of the ∂-equation on the Hartogs triangle 243

harmonic function �(w) = −2 log |w2| whose multiples are used as weights. Other
related notation is explained in Sect. 3 below. Then � = 0 corresponds to the usual
unweighted L2-space on H, positive values of � correspond to allowing functions to
blow up in a controlled way at 0, and negative values of � correspond to forcing func-
tions to vanish in a weak sense at the point 0. We let L2

0,1(H, ��) denote the space of
(0, 1)-forms on H with coefficients in L2(H, ��). On a space of forms whose coeffi-
cients lie in a Hilbert space (e.g., L2

0,1(H, ��) here, and the spaces W k
0,1(H, ��) and

W k
0,1(P, ��) defined below), according to standard convention, we impose a Hilbert

space norm whose square is the sum of the squares of the norms of the coefficients.
It follows from Hörmander’s theory of L2-estimates for the ∂-equation (see Sect. 3
below) that given a ∂-closed f in L2

0,1(H, ��), there is a u in L2(H, ��) such that

∂u = f , and we have

∥
∥u

∥
∥

L2(H,��)
≤ √

e
∥
∥ f

∥
∥

L2
0,1(H,��)

(2.2)

(where e is the base of natural logarithms). By a standard weak compactness argument,
among all such solutions u there is a u� of smallest norm, which is the (weighted)
canonical solution of ∂u = f , with weight ��. The aim of this article is to understand
the regularity of u� in terms of that of f .

Let k be a non-negative integer, and let � be an integer. We introduce the weighted
Sobolev space W k(H, ��) of locally integrable functions on H in the following way.
For a multi-indexα = (α1, α2, α3, α4) of non-negative integers, write |α| = ∑4

j=1 α j ,
and let

Dα = ∂ |α|

∂w
α1
1 ∂w1

α2∂w
α3
2 ∂w2

α4
, (2.3)

and define the space W k(H, ��) by the finiteness of the norm

∥
∥ f

∥
∥2

W k (H,��)
=

∑

|α|≤k

∫

H

|w2|2�
∣
∣Dα f (w)

∣
∣2

dV (w), (2.4)

where the derivatives are in the weak sense. We will refer to W k(H, ��) as the weighted
Sobolev space of order k on H with weight ��. We let W k

0,1(H, ��) be the space of

(0, 1)-forms on H with coefficients in W k(H, ��). The main result of this paper is:

Theorem 2.1 For every non-negative integer k there is a constant C > 0, such that
for each ∂-closed g in W 2k

0,1(H, ��), the canonical solution u� of ∂u� = g is in

W k(H, (�+ 2k)�), and satisfies an estimate

∥
∥u�

∥
∥

W k (H,(�+2k)�) ≤ C
∥
∥g

∥
∥

W 2k
0,1(H,��)

(2.5)

Note that the order of Sobolev differentiability of the solution is half of that of the
data, and the weight factor in the norm changes from |w2|2� to |w2|2(�+2k), indicating
that the solution u� may have much more rapid growth near 0 than g has.
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No claim can be made for the optimality of the estimate given in (2.5). Indeed,
the seeming loss of smoothness from W 2k to W k is illusory, arising from the use of
the estimates given in (6.5) below, and could in principle be avoided by introducing
special weighted Sobolev spaces adapted to the Hartogs Triangle, but we have chosen
to formulate the result in terms of the simpler spaces W k(H, ��). We are interested in
quantifying the possible blowup of the solution of the ∂-equation on H with smooth
data, and this is deduced in Corollary 2.2 below starting from Theorem 2.1.

The case � = 0 corresponds to the usual canonical solution. In this case we can
deduce the following corollary regarding the blowup of the solution of the ∂-equation
at the point (0,0):

Corollary 2.2 Let g ∈ C ∞
0,1(H) be a ∂-closed (0, 1)-form smooth up to the boundary

on H. Then the canonical solution u0 of the equation ∂u0 = g is smooth on H and
extends smoothly up to all points of the boundary except possibly at the point (0, 0).
If α is a multi-index and Dα is as in (2.3), we have

∫

H

|w2|4|α| ∣∣Dαu0(w)
∣
∣
2

dV (w) < ∞. (2.6)

Proof Since g ∈ C ∞
0,1(H), for every nonnegative integer k, we have g ∈ W 2k

0,1(H),

and consequently by Theorem 2.1, the solution u0 is in W k(H, 2k�). If B be an open
ball in C

2, such that 0 �∈ B, the weight |w2|4k in the definition of the Sobolev space
W k(H, 2k�) is smooth and bounded away from zero and therefore the restriction of
functions in W k(H, 2k�) to B ∩ H belong to W k(B ∩ H). Conversely, since B ∩ H is
Lipschitz, by standard extension results, every function in W k(B∩H)may be extended
to a function in W k(H). Since this holds for each k, the restriction of u0 to B ∩ H is
in C ∞(B ∩ H). So the canonical solution u0 ∈ C ∞(H \ {(0, 0)}). The finiteness of
(2.6) now follows from (2.5). �	

Recall that the Bergman projection B is defined as the orthogonal projection oper-
ator from L2(H) onto the closed subspace L2(H) ∩ O(H), where O(H) is the space
of holomorphic functions on H. We also have the following regularity and irregularity
results for the Bergman projection on H.

Theorem 2.3 For k ≥ 0, the Bergman projection B maps the Sobolev space
W 2k+1(H) (without weight) continuously into the weighted holomorphic Sobolev
space

W k (H, 2k�) ∩ O(H).

It follows that if f ∈ C ∞(H), then B f ∈ C ∞(H \ {0}) ∩ O(H). On the other hand,
B does not map the space C ∞

0 (H) of smooth functions compactly supported in H into
W 1(H) ∩ O(H).

Note that this result shows that the singularity of the Bergman projection for the
Hartogs triangle is contained at the singular point and it does not propagate.
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Sobolev regularity of the ∂-equation on the Hartogs triangle 245

3 Hörmander’s existence theorem

For a domain � in complex Euclidean space, and a real-valued continuous function
ψ on �, recall that L2(�,ψ) denotes the space of locally-integrable functions f on
� for which the weighted norm

∥
∥ f

∥
∥

2
L2(�,ψ)

=
∫

�

| f |2 e−ψdV

is finite. We denote by L2
p,q(�,ψ) the space of (p, q)-forms with coefficients in the

space L2(�,ψ). These are Hilbert spaces under the obvious inner products.
In this paper, on a domain in C

2, we will use the harmonic weight function�, given
by

�(w1, w2) = −2 log |w2|, (3.1)

which is continuous provided the domain does not intersect the complex line {w2 = 0}.
Since e−��(w) = |w2|2�, this also explains the notations L2(H, ��) and W k(H, ��)

adopted in the previous section for the spaces with norms (2.1) and (2.4) respectively.
The cornerstone of the L2-theory of ∂-operator is the following famous theorem of

Hörmander ([11, Theorem 2.2.1′], see also [1] and the expositions in [6,18]):

Result 3.1 Let � � C
n be pseudoconvex, and let ψ ∈ C 2(�) be a strictly plurisub-

harmonic weight function on�. For z ∈ �, denote by μ(z) the smallest eigenvalue of

the complex Hessian matrix ( ∂2ψ
∂z j ∂zk

(z))1≤ j,k≤n. If λ = inf z∈� μ(z) > 0, then for any

∂-closed g ∈ L2
p,q(�,ψ), (p, q)-form, q > 0, there is a u ∈ L2

p,q−1(�,ψ) such that

∂u = g, satisfying the estimate

∥
∥u

∥
∥

L2
p,q−1(�,ψ)

≤ 1

λq

∥
∥g

∥
∥

L2
p,q (�,ψ)

.

From this the estimate (2.2) on H can be deduced as follows. We use the weight ψ
on H, where ψ(w) = 1

2 |w|2 + ��(w). Then the space L2(H, ψ) is the same as
L2(H, ��), and the norms are equivalent. In fact it is easy to see that

1√
e

∥
∥ f

∥
∥

L2(H,��)
≤ ∥

∥ f
∥
∥

L2(H,ψ)
≤ ∥

∥ f
∥
∥

L2(H,��)
. (3.2)

But ψ is strictly plurisubharmonic, and both eigenvalues of its complex Hessian are
identically 1, so in Result 3.1, λ = 1. Let g ∈ L2

0,1(H, ψ), with ∂g = 0. Therefore,

there is a u on H such that ∂u = g and
∥
∥u

∥
∥

L2(H,ψ)
≤ ∥

∥g
∥
∥

L2
0,1(H,ψ)

. Combining this

with (3.2), the estimate (2.2) follows.
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4 The product model of the Hartogs triangle

The Hartogs Triangle is biholomorphic to the product domain P = D×D
∗, where D is

the unit disc {z ∈ C | |z| < 1} and D
∗ is the punctured unit disc {z ∈ C | 0 < |z| < 1}.

The explicit map F : H → P is given by (w1, w2) �→ (w1
w2
, w2), and the inverse

G = F−1 : P → H is given by (z1, z2) �→ (z1z2, z2). This product representation
allows us to study the regularity of the ∂-equation on the Hartogs triangle using the
technique of [4]. Note that the biholomorphisms F and G are singular at the boundary,
so we need to understand how spaces of functions and forms transform under these
maps.

Given a locally integrable function or form f on H, we let G∗ f denote the pullback
of f to P. Similarly, given a locally integrable function or form g on P, we denote by
F∗g its pullback to a form or function on H. We now consider the mapping properties
of the linear mappings F∗ and G∗ on weighted Sobolev spaces. We denote by F∗

1 and
F∗

0, the action of the operator F∗ on (0, 1)-forms and functions respectively, and with
a similar meaning for G∗

1 and G∗
0.

We define weighted Sobolev spaces W k(P, ��) on the domain P by the finiteness
of the norm

∥
∥g

∥
∥2

W k (H,��)
=

∑

|α|≤k

∫

P

|z2|2�
∣
∣Dαg(z)

∣
∣
2

dV (z).

Lemma 4.1 For each non-negative integer k, and for m ∈ Z, the pullback operator F∗
0

maps the space W k(P, (m + 1)�) continuously and injectively to W k(H, (m + k)�).
Further, for k = 0,F∗

0 is actually an isometric isomorphism of the Hilbert space
L2(P, (m + 1)�) with the Hilbert space L2(H,m�), and consequently the inverse
mapping G∗

0 is also an isometry from L2(H,m�) to L2(P, (m + 1)�).
Also, for each non-negative integer k, and for each � ∈ Z, the map G∗

1 maps the
space of forms W k

0,1(H, ��) continuously and injectively into W k
0,1(P, (�+ 1)�).

We will allow ourselves, in this proof and the sequel, the standard abuse of notation
by which C stands for an arbitrary constant, with possibly different values at different
occurrences.

Proof Since G and F are biholomorphisms inverse to each other, it follows that the
operators G∗ and F∗ are also inverses to each other. In particular, they are both injective.

Let f be a locally integrable function on P and let g = F∗
0 f . Then g(w1, w2) =

f (
w1

w2
, w2). Using the chain rule repeatedly (i.e., the Faà di Bruno formula, cf. [3])

we see that there is an estimate of the form

∣
∣Dα

wg(w1, w2)
∣
∣ ≤ C

|w2||α|
∑

|β|≤|α|

∣
∣
∣
∣

(

Dβ
z f

)
(
w1

w2
, w2

)∣
∣
∣
∣
.

Now, we have

123



Sobolev regularity of the ∂-equation on the Hartogs triangle 247

∥
∥F∗

0 f
∥
∥2

W k (H,(m+k)�) =
∑

|α|≤k

∫

H

|w2|2(m+k)
∣
∣Dαg(w)

∣
∣2

dV (w)

≤ C
∑

|α|≤k

∫

H

|w2|2(m+k)

(

1

|w2|2k

∣
∣
∣
∣
(Dα

z f )

(
w1

w2
, w2

)∣
∣
∣
∣

2
)

dV (w)

≤ C
∑

|α|≤k

∫

P

|z2|2m
∣
∣Dα f

∣
∣2 |z2|2 dV (z)

= C
∥
∥ f

∥
∥2

W k (P,(m+1)�),

where, in the last but one line, |z2|2 represents the Jacobian factor in the change of
variables. Considering the case k = 0 separately, we have

∥
∥F∗

0 f
∥
∥

L2(H,m�) =
∫

H

|w2|2m |g(w)|2 dV (w)

=
∫

P

|z2|2m | f (z)|2 |z2|2 dV (z)

= ∥
∥ f

∥
∥

L2(P,(m+1)�),

which proves that F∗
0 is an isometry from L2(P, (m + 1)�) onto L2(H,m�).

Now, let g = g1dw1 + g2dw2 be a (0, 1)-form on H. The pullback f = G∗
1g is

then given by f = f1dz1 + f2dz2, where,

{

f1(z) = g1(z1z2, z2)z2

f2(z) = g1(z1z2, z2)z1 + g2(z1z2, z2).

Using the Faà di Bruno formula again, we obtain for some constants depending on α:

{

|Dα f1| ≤ C
∑

|β|≤|α|
∣
∣Dβg1

∣
∣

|Dα f2| ≤ C
∑

|β|≤|α|
(∣
∣Dβg1

∣
∣ + ∣

∣Dβg2
∣
∣
)

.

Therefore,

∥
∥G∗

1g
∥
∥2

W k (P,(�+1)�) =
∑

|α|≤k

∫

P

|z2|2(�+1)
(∣
∣Dα f1

∣
∣2 + ∣

∣Dα f2
∣
∣2

)

dV (z)

≤ C
∑

|α|≤k

∫

H

|w2|2�
(∣
∣Dαg1

∣
∣2 + ∣

∣Dαg2
∣
∣2

)

dV (w)

= C
∥
∥g

∥
∥2

W k (H,��)
,

where again we have used the change of variables formula. �	
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5 Canonical solutions on H and P

5.1 The canonical solution operator

In this paper we are concerned with the situation in which we want to solve on H the
∂-problem for a ∂-closed (0, 1)-form g, i.e., find a function u such that ∂u = g. In
view of this, we confine our discussions to the action of the ∂-operator on functions,
noting here that many of these constructions apply to forms of arbitrary degree.

Let � be a domain and ψ be a continuous weight function on �. As usual, we
consider the maximal realization of ∂ , which is a closed densely defined unbounded
operator from L2(�,ψ) to L2

0,1(�,ψ), whose domain Dom(∂) consists of all f ∈
L2(�,ψ) such that in the distributional sense ∂ f ∈ L2

0,1(�,ψ). If the range Img(∂)

of the operator ∂ is a closed subspace of L2
0,1(�,ψ), we can use general functional

analytic methods to define a bounded solution operator K : Img(∂) → L2(�,ψ),
which maps a g ∈ Img(∂) ⊂ L2

0,1(�,ψ) to the solution of smallest norm of the

equation ∂u = g (equivalently, we can say that K g is the unique solution of ∂u = g
which is orthogonal to the Bergman Space O(�) ∩ L2(�,ψ).) We can extend K to
the whole of L2(�,ψ) by declaring to be zero on (Dom(∂))⊥ ⊂ L2(�,ψ). This
K is referred to the canonical (or Kohn) solution operator of the ∂-problem on �
with weight ψ . In the theory of the ∂-Neumann problem, we can represent K as
∂

∗
ψNψ,(0,1), where ∂

∗
ψ is the Hilbert space adjoint of the ∂ operator, and Nψ,(0,1) is

the ∂-Neumann operator on the domain � with weight ψ acting on (0, 1)-forms. The
study of the regularity properties of Nψ,(0,1) provides a powerful approach to the study
of regularity of K itself. Unfortunately this method is not available on the non-smooth
domain H we are considering.

For technical reasons we would sometimes like to think of the canonical solution
operator as defined on the orthogonal direct sum L2(�,ψ)⊕ L2

0,1(�,ψ) and taking
values in L2(�,ψ). This is achieved by declaring the operator to be 0 on the functions
in L2(�,ψ) and extending linearly.

5.2 K �
H

and K �
P

.

From the discussion in Sect. 3 it follows that there exists a canonical solution operator
on the domain H with weight �� for each � ∈ Z, where � is the harmonic function
defined in (3.1). We denote this operator by K �

H
. Then K �

H
is a bounded operator from

L2
0,1(H, ��) to L2(H, ��).

Similarly, there is for each � ∈ Z, a canonical solution operator K �
P

for the ∂-
operator on P. Applying Result 3.1 to P, with weight ψ = 1

2 |z|2 + �� gives us a
solution to ∂v = g for g ∈ L2

0,1(P, ψ)∩ ker(∂), satisfying the estimate
∥
∥v

∥
∥

L2(P,ψ)
≤

∥
∥g

∥
∥

L2
0,1(P,ψ)

. But L2(P, ψ) and L2(P, ��) are the same space with equivalent norms,

so we can solve ∂v = g with g ∈ L2
0,1(P, ��)∩ ker(∂), where v satisfies the estimate

∥
∥v

∥
∥

L2(P,��)
≤ C

∥
∥g

∥
∥

L2
0,1(P,��)

. Now the existence of K �
P

follows as in Sect. 3.

We note the relation between the canonical operators on H and P:
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Lemma 5.1 We have

K �
H

= F∗
0 ◦ K �+1

P
◦ G∗

1. (5.1)

Proof Denote the operator defined by the right hand side of (5.1) by S�. This maps
(0, 1)-forms on H to functions on H and satisfies

K �+1
P

◦ G∗
1 = G∗

0 ◦ S�. (5.2)

Since the ∂ operator commutes with pullbacks by holomorphic mappings, it follows
that S� is a solution operator for ∂ , i.e., ∂ (S�g) = g, if ∂g = 0 on H. Further, S�
is bounded from L2

0,1(H, ��) to L2(H, ��), since we know from Lemma 4.1 above

that G∗
1 is continuous from the space L2

0,1(H, ��) to L2
0,1(P, (�+ 1)�) and that F∗

0 is

continuous from L2(P, (�+1)�) to L2(P, ��), and by definition K �+1
P

is continuous
from L2

0,1(P, (�+ 1)�) to L2(P, (�+ 1)�).

Suppose now that S� �= K �
H

. Then there is a g ∈ L2
0,1(H, ��) with ∂g = 0, and

a u ∈ L2(H, ��) such that ∂u = g and
∥
∥u

∥
∥

L2(H,��)
<

∥
∥S�g

∥
∥

L2(H.��)
. Note that

G∗
1g is ∂-closed, and consider the ∂-problem on P given by ∂v = G∗

1g. Both G∗
0u and

K �+1
P

(G∗
1g) are solutions of this equation in L2(P, (�+ 1)�), and since K �+1

P
(G∗

1g)
is the canonical solution, we have

∥
∥K �+1

P
(G∗

1g)
∥
∥

L2(P,(�+1)�) ≤ ∥
∥G∗

0u
∥
∥

L2(P,(�+1)�). (5.3)

Since G∗
0 is an isometry by Lemma 4.1, it follows that

∥
∥G∗

0u
∥
∥

L2(P,(�+1)�) = ∥
∥u

∥
∥

L2(H,��)

<
∥
∥S�g

∥
∥

L2(H.��)

= ∥
∥G∗

0 S�g
∥
∥

L2(P,(�+1)�)

= ∥
∥K �+1

P
(G∗

1g)
∥
∥

L2(P,(�+1)�),

where we have used (5.2) in the last line. But this contradicts (5.3) and we conclude
therefore that S� = K �

H
. �	

5.3 Representation of the canonical solution on the product domain P

In order to estimate the operator K �
P

on the product domain P = D × D
∗, we want to

use [4, Theorem 4.7] to represent it using terms of the canonical solution operators and
Bergman projections of the factors D and D

∗. This theorem is as follows (⊗̂ denotes
the Hilbert tensor product of Hilbert spaces, i.e., the completion of the algebraic tensor
product under its natural hermitian inner product, see [4]).

Result 5.2 Let �1 � C
n1 and �2 � C

n2 be bounded Lipschitz domains, and let
ψ1, ψ2 be continuous functions on �1,�2 respectively. Suppose that, for j = 1, 2,
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the ∂-operator has closed range as an operator from L2(� j , ψ j ) to L2
0,1(� j , ψ j ).

Then the ∂-operator has closed range from L2(�,ψ) to L2
0,1(�,ψ), where � =

�1 × �2 � C
n1+n2 , and ψ = ψ1 + ψ2. Further the canonical solution operator

K : L2
0,1(�,ψ) → L2(�,ψ) restricted to the space of ∂-closed (0, 1)-forms has the

representation

K = K1⊗̂I2 + σ1 P1⊗̂K2, (5.4)

where K1, K2 are the canonical solution operators on �1,�2 respectively, P1 is the
harmonic projection on�1 and σ1 is a linear operator which restricts to multiplication
by (−1)d on the space of forms of total degree d on �1.

Of course, there is a second representation analogous to (5.4) obtained by switching
the roles of �1 and �2.

Unfortunately, one of the factors D
∗ of P is not Lipschitz, so Result 5.2 does

not apply as stated in the situation we are interested. However, we contend that the
conclusion of Result 5.2 still holds for �1 = D and �2 = D

∗ with weights ψ1 ≡ 0
and ψ2 = �φ, where φ is the harmonic function on D

∗ given by

φ(z) = −2 log |z|. (5.5)

We first state a general result which we can apply to P. Let H1 and H2 be Hilbert
spaces, and let T : H1 → H2 be a densely defined closed linear operator from a
subspace Dom(T ) ⊂ H1 to a subspace H2. The graph norm

∥
∥u

∥
∥
�(T ) of an element

u ∈ Dom(T ) is defined by
∥
∥u

∥
∥2
�(T ) = ∥

∥u
∥
∥2

H1
+ ∥

∥T u
∥
∥2

H2
, and since T is closed,

Dom(T ) is a Hilbert space in this norm. Recall that a core of a densely defined
operator T is a subspace G ⊂ Dom(T ) which is dense in Dom(T ) in the graph norm
(cf. [13, p. 155].) After these definitions, we can state the slightly more general form
of Result 5.2.

Proposition 5.3 The hypotheses are the same as in Result 5.2, except that �1 and
�2 are not assumed to be Lipschitz. Instead we assume that there exists a core G1 of
∂ : L2(�1, ψ1) → L2

0,1(�1, ψ1) and a core G2 of ∂ : L2(�2, ψ2) → L2
0,1(�2, ψ2),

such that the algebraic tensor productG1⊗G2 is a core of the operator ∂ : L2(�,ψ) →
L2

0,1(�,ψ), then the same conclusion (in particular the representation (5.4) of the
canonical solution) holds.

Proof We only indicate the changes that need to be made in the proof of Result 5.2
as given in [4] in order to verify this more general statement. Note that the only
way the Lipschitz condition is used in the proof of Result 5.2 is to provide the cores
C ∞(�1),C ∞(�2),C ∞(�) on �1,�2 and �, and to make sure that C ∞(�1) ⊗
C ∞(�2) is dense in the graph-norm �(∂) in C ∞(�) and therefore in Dom(∂). It is
easy to check all the arguments in [4] continue to hold if we replace C ∞(�1) by G1
and C ∞(�2) by G2. �	

We now proceed to apply Proposition 5.3 to P = D × D
∗. We take �1 to be D and

ψ1 ≡ 0. Then K1 = KD, the canonical solution operator on the unit disc D without
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any weight, and P1 = PD, the Bergman projection on D in degree 0, and the zero
operator in other degrees (since harmonic spaces vanish in other degrees.) The closed
range property for ∂ and the existence of the canonical solution operator is immediate
from Result 3.1 by using the weight ψ = 1

2 |z|2.
For�2, we take the punctured disc D

∗. Let φ be as in (5.5). We take the weight ψ2
to be �φ. Note that then L2(D∗, �φ) has the norm

∥
∥ f

∥
∥

L2(D∗,�φ) =
∫

D∗
|z|2� f (z)dV (z).

We need to show that ∂ : L2(D∗, �φ) → L2
0,1(D

∗, �φ) has closed range. For this
we use the same method as used in the proof of (2.2). In Result 3.1, we let the weight
ψ to be ψ = 1

2 |z|2 + �φ. This immediately shows that for any gdz ∈ L2
0,1(D

∗, �φ),
there is a v ∈ L2(D∗, �φ) such that ∂v = gdz, i.e. ∂v

∂z = g, and v satisfies the estimate

∥
∥v

∥
∥

L2(D∗,�φ) ≤ √
e
∥
∥g

∥
∥

L2(D∗,�φ).

The existence of the canonical solution follows as usual. We denote the canonical
solution operator by K �

D∗ . It is a bounded operator from L2
0,1(D

∗, �φ) to L2(D∗, �φ).
In order to apply Proposition 5.3 we also need cores G1 of ∂ : L2(D) → L2

0,1(D),

and G2 of ∂ : L2(D∗, �φ) → L2
0,1(D

∗, �φ) such that G1 ⊗ G2 is a core of

∂ : L2(P, ��) → L2
0,1(P, ��). We take G1 = C ∞(D). Since D has smooth boundary,

it follows that G1 is a core for the ∂ operator on L2(D). Let G2 be the space of functions
on D

∗ of the form z−� f , where f ∈ C ∞(D). We have the following.

Lemma 5.4 (1) G2 is a core of ∂ : L2(D∗, �φ) → L2
0,1(D

∗, �φ).
(2) G1 ⊗ G2 is a core of ∂ : L2(P, ��) → L2

0,1(P, ��).

Proof Let g ∈ Dom(∂) ⊂ L2(D∗, �φ). It follows that z�g ∈ L2(D) and ∂(z�g) =
z�∂g ∈ L2(D). Therefore, z�g belongs to the domain of ∂ as an operator on L2(D).
We take a sequence { fν} of forms in C ∞(D) converging in the graph norm of ∂ on
L2(D) to z�g. It is easy to see that z−� fν converges to g in the graph norm of ∂ on
L2(D∗, �φ). Part (1) follows.

Let H denote the forms on P = D × D
∗ which are of the type z−�

2 f , where
f ∈ C ∞(D×D). An argument analogous to the one in Part (1) above shows that H is a
core of the ∂ operator acting on L2(P, ��). Given any z−�

2 f ∈ H we can approximate
f in the C 1 norm on D by elements of the algebraic tensor product C ∞(D)⊗C ∞(D)
(cf. [12, page 369].) From this the statement (2) follows immediately. �	

Therefore, we obtain the following representation of the canonical solution K �
P

in terms of the factor domains D and D
∗. Note that in the second term of (5.4), the

only term that is non-zero is the term corresponding to functions on D, since the har-
monic projection vanishes in every other degree, and for this remaining term we have
σ1 = 1.
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Proposition 5.5 On the ∂-closed (0, 1)-forms in L2
0,1(P, ��), we have

K �
P

= KD⊗̂ID∗ + PD⊗̂K �
D∗ ,

where

• KD : L2
0,1(D) → L2(D) is the canonical solution of the ∂ equation on the unit disc

(recall that by convention, we assume that canonical solution operators vanish on
functions).

• ID∗ is the identity map on functions and forms on D
∗.

• PD : L2(D) → L2(D)∩O(D) is the Bergman projection. It is extended to L2
0,1(D)

by setting it equal to 0.
• K �

D∗ : L2
0,1(D

∗, �φ) → L2(D∗, �φ) is the canonical solution operator on D
∗ with

weight �φ.

6 Proof of Theorem 2.1

6.1 Expression of K �
H

in terms of components

Combining Proposition 5.5 with Lemma 4.1 we obtain the following:

Corollary 6.1 We have

K �
H

= F∗
0 ◦

(

KD⊗̂ID∗ + PD⊗̂K �+1
D∗

)

◦ G∗
1. (6.1)

We need to estimate the various operators appearing in (6.1) in Sobolev spaces in
order to prove Theorem 2.1. The regularity of G∗

1 and F∗
0 in partial Sobolev spaces has

already been discussed in Lemma 4.1. We consider the Sobolev Space W k(D) on the
unit disc of order k ≥ 0, which is given by the finiteness of the norm

∥
∥ f

∥
∥2

W k (D)
=

∑

α+β≤k

∫

D

∣
∣
∣
∣

∂α+β f

∂zα∂zβ

∣
∣
∣
∣

2

dV

For the disc D, it is well-known from potential theory that KD maps ∂-closed forms
in W k

0,1(D) to functions in W k+1(D), and the Harmonic projection, which is non-
zero only in degree 0, is identical to the Bergman projection which maps functions in
W k(D) to holomorphic functions in W k(D) (condition “R”).

6.2 Regularity of K �
D∗

We use Sobolev spaces with the weight φ as in (5.5). The norm in such a space
W k(D∗, �φ) is given by
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∥
∥ f

∥
∥

2
W k (D∗,�φ) =

∑

α+β≤k

∫

D

|z|2�
∣
∣
∣
∣

∂α+β f

∂zα∂zβ

∣
∣
∣
∣

2

dV .

With respect to these spaces, we have the following.

Proposition 6.2 For every nonnegative integer k, the operator K �
D∗ is bounded from

the Sobolev space W k
0,1(D

∗, �φ) to the Sobolev space W k(D∗, (�+ k)φ).

Proof Let g ∈ W k(D∗, �φ), and set g̃ = zk+�g. We claim that g̃ ∈ W k(D), the
unweighted standard Sobolev space of order k on the disc. Indeed, for α+ β ≤ k, we
have using the Leibniz rule:

∂α+β g̃

∂zα∂zβ
=

α
∑

j=0

(
α

j

)

zk+�− j ∂
α+β− j g

∂zα− j∂zβ
.

Note that each term in the sum on the right is in L2(D), since by hypothesis g ∈
W k(D∗, �φ). Further, using the fact that

∣
∣zk+�− j

∣
∣ ≤ |z|�, it easily follows that there

is an estimate

∥
∥g̃

∥
∥

W k (D)
≤ C

∥
∥g

∥
∥

W k (D∗,�φ). (6.2)

Let ũ denote that canonical solution of the equation ∂ ũ = g̃dz in L2(D) (without any
weights). Then we know that ũ ∈ W k+1(D), and we have an estimate

∥
∥ũ

∥
∥

W k+1(D)
≤ C

∥
∥g̃

∥
∥

W k (D)
. (6.3)

Set u = z−(k+�)ũ. Then, on D
∗, we have ∂u = gdz and

∥
∥ũ

∥
∥2

W k+1(D)
= ∥

∥zk+�u
∥
∥2

W k+1(D)

=
∑

α+β≤k+1

∫

D

∣
∣
∣
∣

∂α+β

∂zα∂zβ

(

z(k+�)u
)
∣
∣
∣
∣

2

dV

≥ C
∑

α+β≤k+1

∫

D

|z|2(k+�)
∣
∣
∣
∣

∂α+βu

∂zα∂zβ

∣
∣
∣
∣

2

dV

≥ C
∥
∥u

∥
∥

W k+1(D∗,(�+k)φ).

Combining this with (6.2) and (6.3), we see that there is a linear solution operator
g �→ u, for ∂

∂z on the punctured disc D
∗ which is continuous from W k(D∗, �φ) to

W k+1(D∗, (�+ k)φ).
Denote by v = K �

D∗(gdz) the canonical solution of ∂v = gdz in the weighted
space L2(D∗, �φ). Then v is of the form u + h, where h is a function in the Bergman
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space O(D∗) ∩ L2(D∗, �φ), and u is the solution of ∂u = gdz found above. But
then h must be of the form h = z−� f , where f ∈ O(D) ∩ L2(D). Denote by D

∗
1
2

the punctured disc {0 < |z| < 1
2 } of radius 1

2 . A direct computation shows that
h ∈ W k(D∗

1
2
, (�+ k)φ). Since by the last paragraph, u ∈ W k+1(D∗, (�+ k)φ), it now

follows that v ∈ W k(D∗
1
2
, (�+ k)φ).

Now let χ be a cutoff on D which is identically 1 on {|z| > 1
2 }, and vanishes in a

neighborhood of 0. By standard localization results, χv ∈ W k+1(D). Combining with
the fact that v ∈ W k(D∗

1
2
, (� + k)φ), it follows that v ∈ W k(D∗, (� + k)φ), and the

result is proved. �	

6.3 Estimates on K �
H

As in [4], for an integer k ≥ 0, we introduce the weighted partial Sobolev space
W̃ k(P, ��) by the finiteness of the norm:

∥
∥ f

∥
∥2

W̃ k (P,��)
=

∑

α1+α2≤k
α3+α4≤k

∫

P

|z2|2�
∣
∣Dα f (z)

∣
∣2

dV (z), (6.4)

where Dα is as in (2.3), the derivatives are in the weak sense, and note the special
range of summation. It is clear that

W 2k(P, ��) � W̃ k(P, ��) � W k(P, ��), (6.5)

with continuous inclusions.
We begin with the following lemma which holds for every non-negative k.

Lemma 6.3 W̃ k(P, ��) = W k(D)⊗̂W k(D∗, �φ).

Proof Were the domains D
∗ and D both Lipschitz we could use the method of [4,

Lemma 5.1] directly. Since D
∗ is non-Lipschitz, we proceed as follows. For a multi-

index ν ∈ Z
4, denote by zν the Laurent-type monomial zν1

1 z1
ν2 zν3

2 z2
ν4 . For m ∈ Z, if

S(m) denotes the set of monomials {zν | ν1 ≥ 0, ν2 ≥ 0, ν3 + ν4 ≥ m}, it is easy to
see that the elements of S(−�) form a complete set in L2(P, ��), i.e. the linear span
of S(−�) is dense in L2(P, ��). If α and Dα are as in (2.3) with α3 +α4 ≤ k, then for
zν ∈ S(m), the derivative Dαzν is a scalar multiple of an element of S(m −k). Further,
every element of S(m−k) arises (up to a multiplicative factor) as a partial derivative of
this sort. By definition, a function f ∈ W̃ k(P, ��), if and only if Dα f ∈ L2(P, ��),
forαwithα1+α2 ≤ k andα3+α4 ≤ k. It now follows easily that S(−�+k) is complete
in W̃ k(P, ��). But an element of S(−�+k)may be written as (zν1

1 z1
ν2)(zν3

2 z2
ν4), where

ν1, ν2 ≥ 0 and ν3 + ν4 ≥ −� + k. The first factor is in W k(D) (indeed for any k)
and the second factor is in W k(D∗, �φ). It follows that the algebraic tensor product
W k(D)⊗ W k(D∗, �φ) is dense in W̃ k(P, ��) and the result follows. �	
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We can now complete the proof of Theorem 2.1. Since u� = K �
H
(g), it is sufficient

to show that the operator K �
H

is bounded from W 2k(H, ��) to W k(H, (l + 2k)�). We
recall that the representation of K �

H
, given by (6.1), is:

K �
H

= F∗
0 ◦ K �+1

P
◦ G∗

1 = F∗
0 ◦

(

KD⊗̂ID∗ + PD⊗̂K �+1
D∗

)

◦ G∗
1.

Thanks to Lemma 4.1, the operator G∗
1 which occurs as the first factor from the right,

is known to be continuous from W 2k
0,1(H, ��) to W 2k

0,1(P, (�+ 1)�). Thanks to (6.5),

it now follows that the operator G∗
1 is continuous from W 2k

0,1(H, ��) to W̃ k
0,1(P, (�+

1)�).
We claim that the canonical solution operator K �+1

P
, which occurs as the middle

factor of the expression for K �
H

is bounded from W̃ k
0,1(P, (� + 1)�) to W̃ k(P, (� +

k + 1)�). Using Lemma 6.3 and the fact that forms of different degree are orthogonal
by definition, we have

W̃ k
0,1(P, (�+ 1)�)=W k

0,1(D)⊗̂W k(D∗, (�+ 1)φ)⊕ W k(D)⊗̂W k
0,1(D

∗, (�+1)φ),

(6.6)

where ⊕ represents orthogonal direct sum of subspaces. Now we look at the two terms
in the expression for K �+1

P
which is the middle factor of (6.1):

KD⊗̂ID∗ + PD⊗̂K �+1
D∗ .

In the first term, KD is the canonical solution on the disc and maps W k
0,1(D) to

W k+1(D). Since the inclusion W k+1(D) ⊂ W k(D) is continuous, it follows that KD

is continuous from W k
0,1(D) to W k(D). Since the inclusion W k(D∗, (� + 1)φ) ⊂

W k(D∗, (�+k +1)φ) is continuous, it follows that the identity map also is continuous
from W k(D∗, (�+1)φ) to W k(D∗, (�+k +1)φ). Moreover, we defined the canonical
solution operator to be zero on functions. It follows now from Lemma 6.3 that the
operator KD⊗̂ID∗ maps the space W̃ k(P, (�+1)�) continuously into W̃ k(P, (�+k +
1)�).

In the second term PD is the harmonic projection on the disc, which vanishes on
(0, 1)-forms, and consequently, this term acts only on the second summand in the
orthogonal decomposition (6.6) of W̃ k

0,1(P, (� + 1)�). For functions, the Bergman

projection PD on the disc preserves the space W k(D). In Proposition 6.2 we saw that
K �+1

D∗ maps W k
0,1(D

∗, (�+1)φ) continuously into W k(D∗, (�+k+1)φ). It follows from

Lemma 6.3 that PD⊗̂K �+1
D∗ also maps the space W̃ k(P, (� + 1)�) continuously into

W̃ k(P, (�+k +1)�), and the same is true of the sum K �+1
P

= KD⊗̂ID∗ + PD⊗̂K �+1
D∗ ,

which occurs as the middle factor of (6.1).
The continuous inclusions of (6.5) now imply that K �+1

P
maps W 2k

0,1(P, (�+ 1)�)

continuously into W k(P, (� + k + 1)�). But the factor F∗
0 in (6.1), by Lemma 4.1,

maps W k(P, (�+ k + 1)�) continuously into W k(H, (�+ 2k)�). It follows that K �
H

is continuous from W 2k
0,1(H, ��) to W k(H, (�+ 2k)�), and Theorem 2.1 is proved.
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7 Proof of Theorem 2.3

By a result of Kohn (see [6, p. 82]), the Bergman projection B on H can be represented
in terms of the ∂-Neumann operator N as:

B = I − ∂
∗
N∂

= I − K∂,

where K = K 0
H

is the (unweighted) canonical solution operator on the domain H.
Now the ∂ operator maps W 2k+1(H) continuously into W 2k

0,1(H), and thanks to the

regularity result for K established in Theorem 2.1, it follows that K maps W 2k
0,1(H)

continuously into W k(H, 2k�). Since the space W k(H, 2k�) continuously includes
the space W 2k+1(H), it follows by Kohn’s formula above, B is continuous as well
between these spaces. This proves the first statement.

For the second statement, we can either repeat the argument used in the proof of
Corollary 2.2, or we can use Kohn’s formula and Corollary 2.2 directly: if f ∈ C ∞(H),
clearly ∂ f ∈ C ∞

0,1(H) ∩ ker(∂), so by Corollary 2.2 we have K∂ f ∈ C ∞
0,1(H \ {0}).

Therefore, B f = f − K∂ f is in C ∞
0,1(H \ {0}) ∩ O(H).

We claim that to show that B does not map the space C ∞
0 (H) into W 1(H), it suffices

to show that W 1(H)∩ O(H) is not dense in the Bergman space L2(H)∩ O(H) in the
L2-topology. Indeed, if { fn} is a sequence of functions in C ∞

0 (H) which converge in
L2 to a Bergman function f ∈ L2(H) ∩ O(H), then B fn converges to f in L2. If
B fn ∈ W 1(H), this would imply that W 1(H) ∩ O(H) is dense in L2(H) ∩ O(H).

To show that W 1(H)∩O(H) is not dense in the Bergman space L2(H)∩O(H), it is
sufficient to find a non-zero function f ∈ L2(H)∩ O(H) which lies in the orthogonal

complement of W 1(H) ∩ O(H). We can take f (w) = 1

w2
. This f is in the Bergman

space L2(H)∩O(H), since using the standard biholomorphism from H to P given by
(w1, w2) �→ (w1

w2
, w2) we obtain

∫

H

∣
∣
∣
∣

1

w2

∣
∣
∣
∣

2

dV (w) =
∫

P

1

|z2|2
|z2|2 dV (z)

= π2.

However, since ∂ f
∂w2

= 1
w2

2
is not square integrable on H, it follows that f is not in

W 1(H).
Note that any holomorphic function on the domain P has a Laurent expansion

∞
∑

k=−∞

∞
∑

j=0

a j,k z j
1zk

2,

which converges uniformly on compact subsets of P. Using again the biholomorphism
(w1, w2) �→ (w1

w2
, w2), we see that every function in O(H) has a Laurent expansion
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∞
∑

k=−∞

∞
∑

j=0

a j,k

(
w1

w2

) j

wk
2,

converging uniformly on compact subsets. However, if j ≥ 0, k ≥ −1, it is easily seen
that each Laurent monomial (w1

w2
) jwk

2 is in L2(H) and these monomials are orthogonal.
It easily follows from the convergence of the Laurent expansion that these monomials
are complete in the Bergman space L2(H) ∩ O(H), i.e., their span is dense in the
Bergman space.

Now let g ∈ W 1(H) ∩ O(H). Since ∂g
∂z2

∈ L2(H) it follows that in the Laurent

expansion of g, the coefficient of 1
w2

must be 0, since otherwise, the expansion of
∂g
∂z2

will have a term in 1
w2

2
which is not in L2(H). Since the Laurent monomials are

orthogonal in L2(H), it follows that g is orthogonal to f (which is a Laurent monomial
1
w2

), and our result is proved.

Remark For a bounded pseudoconvex domain � in C
n with smooth boundary, the

space C ∞(�) ∩ O(�) is dense in L2(�) ∩ O(�). This follows from results due to
Kohn (see [15]) on the regularity of the weighted ∂-Neumann operator Nt , where the
weight function t |z|2 with large t > 0 is used (see [17, Theorem 8.1] for a detailed
discussion.) Using the proof in [17] and the fact W 1(H) ∩ O(H) is not dense in the
Bergman space L2(H) ∩ O(H), we see that the weighted Bergman projection Bt on
the Hartogs triangle is also not bounded from C ∞

0 (H) to W 1(H). The weights t |z|2
can be substituted by any functions smooth up to the boundary.

We also mention that using a result of Barrett (see [2]), the Bergman projection on
each smooth Diederich–Fornaess worm domain � is not regular from W s to W s for
some s > 0. But it is still an open question whether on each worm B(C∞

0 (�)) is not
contained in W s(�). Our example H is not smooth. On the other hand, such examples
exist for pseudoconvex domains with smooth boundary in complex manifolds (see
[14]).
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