Name_

Math 132 - Quiz 4

Each of the following can be answered with a calculator method accompanied by a good guess. However, you must show the details of a solution which uses *our calculus method*.

- 1. Evaluate $\lim_{x \to 0} \frac{1 e^{3x} + 3x}{x^2}$ Use L'Hospital's Rule as long as it applies. $\lim_{x \to 0} \frac{1 - e^{3x} + 3x}{x^2} = \lim_{x \to 0} \frac{-3e^{3x} + 3}{2x} = \lim_{x \to 0} \frac{-9e^{3x}}{2} = \frac{-9\lim_{x \to 0} e^{3x}}{\lim_{x \to 0} 2} = \frac{-9 \cdot 1}{2} = -\frac{9}{2}$
- 2. Given $f(x) = 3x^4 + 8x^3$,
 - (a) The interval(s) on which f is increasing and the interval(s) on which f is decreasing.
 - (b) The x-coordinate(s) of any local extreme points (indicating as max or min). $f'(x) = 12x^3 + 24x^2 = 12x^2(x+2)$ so 0 and -2 are critical numbers.

	$12x^2$	x+2	f'(x)	f
x < -2	+	_	_	dec.
-2 < x < 0	+	+	+	inc.
0 < x	+	+	+	inc.

So f is decreasing on $(-\infty, 2)$ and increasing on (-2, 0) and $(0.\infty)$. f has a local minimum at -2.

- (c) The interval(s) on which f is concave up and the interval(s) on which f is concave down.
- (d) The x-coordinate(s) of any inflection points.

 $f''(x) = 36x^2 + 48x = 12x(3x + 4)$ so 0 and -4/3 are boundaries of interest.

	12x	3x+4	f''(x)	f
x < -4/3	—	—	+	concave up
-4/3 < x < 0	—	+	—	concave down
0 < x	+	+	+	concave up

So f is concave up on $(-\infty, -\frac{4}{3})$ and $(0, \infty)$ and concave down on $(-\frac{4}{3}, 0)$ Inflection points are at $x = -\frac{4}{3}$ and x = 0.

- 3. Use Newton's Method to find the negative solution of $(x-2)e^x = -1$, showing:
 - (a) The initial approximation that leads to your solution $x_0 = -1$ (Others possible.)
 - (b) Your next four approximations (labeled) following the one in (a) $x_1 = -1.140859086, x_2 = -1.146185641, x_3 = -1.146193221, x_4 = -1.146193221$
 - (c) Your solution to 6 decimal places. -1.146193